cho hàm số y=f(x)=2x+1 thì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{5x-7}{x-2}=\frac{5x-10+3}{x-2}=\frac{5\left(x-2\right)}{x-2}+\frac{3}{x-2}=5+\frac{3}{x-2}\)
Để A nguyên thì \(5+\frac{3}{x-2}\)nguyên, mà 5 là số nguyên nên \(\frac{3}{x-2}\)nguyên.
\(\Rightarrow3⋮\left(x-2\right)\)\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)\(\Rightarrow\left(x-2\right)\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-1;1;3;5\right\}\)
Vậy [...]
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
A = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
2A = 2 . \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
2A = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
2A = \(\frac{1}{3}-\frac{1}{99}\)
2A = \(\frac{32}{99}\)
A = \(\frac{32}{99}\div2\)
A =\(\frac{16}{99}\)
_HT_
/x+0,8/-12,9=0
/x+0,8/=12,9
x+0,8=\(\orbr{\begin{cases}12,9\\-12,9\end{cases}}\)
x=\(\orbr{\begin{cases}12,9-0,8\\-12,9-8\end{cases}}\)
x=\(\orbr{\begin{cases}12,1\\-13,7\end{cases}}\)