`Cho x>0 thỏa : x\(^2\)+\(\frac{1}{x^2}\)=7 .Hãy tính x\(^5\)+\(\frac{1}{x^5}\).
Giải
ta có x\(^2\)+\(\frac{1}{x^2}\)=7
<=>\(\frac{x^4}{x^2}\)=7 <=>\(\sqrt{\frac{x^4}{x^2}}\)=\(\sqrt{7}\)<=> \(\frac{x^2}{x}\)=\(\sqrt{7}\) <=> x = \(\sqrt{7}\)
Rồi thay x = \(\sqrt{7}\) vào x\(^5\)+\(\frac{1}{x^5}\).
làm theo cách này có đúng hay không ?
P/s: lần sau đăng hẳn câu hỏi lên đừng có kiểu đăng như thế này, không ai muốn làm đâu
Bài này sai ngay từ đầu rồi-.-
Bài làm:
Ta có: \(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2\cdot x\cdot\frac{1}{x}=7\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x+\frac{1}{x}=3\left(x>0\right)\)
Bây giờ thì dùng tam giác Pascal mà khai triển ra thôi
\(\left(x+\frac{1}{x}\right)^5=x^5+5x^4\cdot\frac{1}{x}+10x^3\cdot\frac{1}{x^2}+10x^2\cdot\frac{1}{x^3}+5x\cdot\frac{1}{x^4}+\frac{1}{x^5}\)
\(=x^5+5x^3+10x+\frac{10}{x}+\frac{5}{x^3}+\frac{1}{x^5}=\left(x^5+\frac{1}{x^5}\right)+5\left(x^3+\frac{1}{x^3}\right)+10\left(x+\frac{1}{x}\right)\)
\(\Rightarrow x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(x^3+\frac{1}{x^3}\right)-10\left(x+\frac{1}{x}\right)\)
\(=3^5-5\left(x+\frac{1}{x}\right)\left(x^2-x\cdot\frac{1}{x}+\frac{1}{x^2}\right)-10\cdot3\)
\(=243-5\cdot3\cdot\left(7-1\right)-30=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)