Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của đường tròn (O') cắt đường tròn (O) tại C. Tiếp tuyến tại A của đường tròn (O) cắt đường tròn (O') tại D. Biết BC = 4, BD = 9. Tìm độ dài AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số lớn là a ; số bé là b (a;b \(\inℕ^∗\))
Ta có a + b = 1902 (1)
Lại có a : b = 3 dư 222
=> (a - 222) : b = 3
=> a - 222 = 3b
=> a = 3b + 222
Khi đó a + b = 1902
<=> 3b + 222 + b = 1902
<=> 4b = 1680
<=> b = 420 (tm)
Thay b = 420 vào (1)
=> a + 420 = 1902
<=> a = 1482 (tm)
Vậy số lớn là 1482 ; số bé là 420
\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)0
\(< =>\left(x^2+2xy+y^2\right)+7\left(x+y\right)+y^2+10=0\)
\(< =>\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
Đặt a=x+y ta có
\(a^2+7a+10+y^2=0\)
\(< =>a^2+7a+\frac{49}{4}-\frac{9}{4}+y^2=0\)
\(< =>\left(a+\frac{7}{2}\right)^2+y^2=\frac{9}{4}\)
Vì \(\frac{9}{4}\)=\(0+\frac{9}{4}\)và \(a+\frac{7}{2}>=y\)nên \(\hept{\begin{cases}x+y+\frac{7}{2}=\frac{3}{2}\\y=0\end{cases}}\)\(=>\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(\hept{\begin{cases}x-\frac{12}{4}=y-\frac{9}{3}=z-1\left(1\right)\\3x+5y-z=2\left(2\right)\end{cases}}\)
từ (1), ta có: \(x-\frac{12}{4}=y-\frac{9}{3}\Rightarrow y=x-\frac{12}{4}+\frac{9}{3}=x\Rightarrow y=x\)
lại có: \(x-\frac{12}{4}=z-1\Rightarrow z=x-\frac{12}{4}+1=x-2\Rightarrow z=x-2\)
từ (2), ta rút y, z theo x, ta được: \(3x+5x-x+2=2\Rightarrow7x=0\Rightarrow x=y=0\)
\(\Rightarrow z=x-2=0-2=-2\)
vậy (x;y;z)=(0;0;-2)