tìm x
4x^2-4x(x-3)+(3-x)^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ:
\(\hept{\begin{cases}a^2\left(b+c\right)=2012\\b^2\left(a+c\right)=2012\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a^2\left(b+c\right)-b^2\left(a+c\right)=0\\b^2\left(a+c\right)+a^2\left(b+c\right)=4024\end{cases}}\)
\(a^2\left(b+c\right)-b^2\left(a+c\right)=0\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow ab+bc+ca=0\left(a\ne b\right)\)
\(b^2\left(a+c\right)+a^2\left(b+c\right)=4024\)
\(\Leftrightarrow ab\left(a+b\right)+c\left(a+b\right)^2-2abc=4024\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)-2abc=4024\)
\(\Leftrightarrow2abc=-4024\)
\(\Leftrightarrow abc=-2012\)
\(ab\left(a-b\right)+c\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow c\left(a+b\right)\left(a-b\right)=-ab\left(a-b\right)\)
\(\Leftrightarrow c\left(a+b\right)=-ab\)
\(\Leftrightarrow c^2\left(a+b\right)=-abc=2012\)
| x + 3 | = 2x - 1
\(\Rightarrow\orbr{\begin{cases}x+3=2x-1\\x+3=-(2x-1)=1-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-x=3+1\\x+2x=1-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\3x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=\frac{-2}{3}\end{cases}}\)
Cách đó chỉ giải với 2 vế là GTTĐ thôi nhá @Sơn
CTTQ : \(\left|f\left(x\right)\right|=g\left(x\right)\)ĐK : \(g\left(x\right)\ge0\)
TH1 : \(f\left(x\right)=g\left(x\right)\)
TH2 : \(f\left(x\right)=-g\left(x\right)\)
-> rồi xét x có thỏa mãn với đk ko rồi kết luận
\(\left|x+3\right|=2x-1\)ĐK : \(x\ge\frac{1}{2}\)
TH1 : \(x+3=2x-1\Leftrightarrow x=4\)(tmđk )
TH2 : \(x+3=1-2x\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)(ktmđk)
Vậy x = 4
x+2x−2−1x=2x(x−2)x+2x−2−1x=2x(x−2)
⇔x(x+2)x(x−2)−x−2x(x−2)=2x(x−2)⇔x(x+2)x(x−2)−x−2x(x−2)=2x(x−2)
⇔x2+2x−x+2−2=0⇔x2+2x−x+2−2=0
⇔x2+x=0⇔x2+x=0
⇔x(x+1)=0⇔[x=−1x=0
x4 - ( 4x - 4 )2 = ( x2 - 4x + 4 )( x2 + 4x - 4 ) = ( x - 2 )2( x2 + 4x - 4 )
\(3=a^2+ab+b^2=\left(a+b\right)^2-ab\Leftrightarrow ab=\left(a+b\right)^2-3\ge-3\)
Dấu \(=\)khi \(\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\).
\(3=a^2+ab+b^2=\left(a-b\right)^2+3ab\Leftrightarrow ab=\frac{3-\left(a-b\right)^2}{3}\le1\)
Dấu \(=\)khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\).
\(4x^2-4x\left(x-3\right)+\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-x+3\right)^2=0\Leftrightarrow\left(x+3\right)^2=0\Leftrightarrow x=-3\)