Cho tam giác ABC, các tia phân giác của góc B và C cắt nhau ở I. Kẻ ID vuông góc với AB (D∈AB), kẻ IE vuông góc với AC (E∈AC). Chứng minh rằng AD = AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ACE^
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và ˆD=ˆED^=E^
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
ˆD=E^
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
ˆHAB=KAC^
Do dó: ΔABH=ΔACK
Gọi hai cạnh góc vuông là a, b; cạnh huyền là c;
Dựa vào tính chất Pi-ta-go, tỉ số của cạnh huyền là: \(\sqrt{3^2}+4^2=\sqrt{9}+16=5\);
Dựa vào tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3;\)
Vì a/3 = 3 => a = 3*3 = 9;
b/4 = 3 => b = 4*3 = 12;
c/5 = 3 => c = 5*3 = 15;