Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải pt bằng cách tính denta;10x2- (5m+3)x -7+5m=0
(2+m2)x2 -m(m+1) +m-2 =0
1/(x+1) - (x-2)/3 = 4/(x+1)
hai tổ sane xuất cùng một loại áo.Tổ thứ nhất may trong 3 ngày ,tổ thứ 2 may trong 5 ngày thì cả hai tổ được 1310 chiếc áo.Biết rằng trong 1 ngày tổ thứ nhất may được nhiều hơn tổ thứ hai 10 chiếc áo.Hỏi mỗi tổ một ngày may được bao nhiêu chiếc áo
Tìm n thuộc N, để các phân số sau có giá trị là số tự nhiên
a) 3n + 5/ n+1
b) n+13/ n+1
\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45x}\) Giúp mình với mn ơiiiiii
Bài 5. Cho đường tròn (O) và một điểm M nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MNP (N nằm giữa M và P) với đường tròn . Gọi E là trung điểm của NP a) Chứng minh rằng năm điểm M, A, K, O, B cùng nằm trên một đường tròn, từ đó chứng minh KM là tia phân giác của AKB b) Gọi Q là giao điểm thứ hai của đường thẳng BK với đường tròn (O).Chứng minh AQ//NP c) Gọi H là giao điểm của AB và MO. Chứng minh rằng: MH.MO= MB2 ; MH.MO= MN.MP d) Chứng minh tứ giác NHOP nội tiếp e) Gọi E là giao điểm của AB và KO, F là giao điểm của AB và NP. CMR: AB2=4 HE.HF và tứ giác KEMH nội tiếp f) Chứng minh: EN, EP là các tiếp tuyến của (O)
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
cho tam giác ABC nhọn nội tiếp đường tròn (O) có đường cao AH . Chứng minh rằng góc BAH = góc OAC
A B C D E H D E Cho tam giác ABC nội tiếp O .BD, CE là 2 đường cao. BD cắt CE tại H và cắt O tại lần lượt D ,E .Chứng minh a BEDC nội tiếpb DE D E c OA vuông góc DEd BC cố định. Chứng minh khi A di động trên cung lớn BC sao cho tam giác ABC luôn là tam giác nhọn thì bán kính đtròn ngoại tiếp tam giác ADE ko đổi.
còn ai online đêns 11 giờ đêm không?
Hello
heolloo