Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4,096 : 16 = 0,256.
32,55 : 1,5 = 21,7.
13,57 : 4,9 = 2,769387755 (Số j to dã man).
13,57: 4,9 dư nhiều lắm
cụ thể: 2,7693877551020408163265306122448979591836734
hơi dài nên thông cảm(có đáp án là đc rồi, đòi hỏi nhìu)
Tổng vận tốc hai xe là 34+50=84(km/h)
Hai xe gặp nhau sau khi đi được: 126:84=1,5(giờ)=1h30p
Hai người gặp nhau lúc:
7h+1h30p=8h30p
Chỗ gặp nhau cách A:
1,5x50=75(km)
a: AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=30^0\)
Xét ΔADB có \(\widehat{ADB}+\widehat{BAD}+\widehat{ABD}=180^0\)
=>\(\widehat{ADB}+30^0+80^0=180^0\)
=>\(\widehat{ADB}=70^0\)
b: Xét ΔABD có \(\widehat{BAD}< \widehat{ADB}< \widehat{ABD}\)
mà BD,AB,AD lần lượt là các cạnh đối diện của các góc BAD,ADB,ABD
nên BD<AB<AD
c: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{ACB}+60^0+80^0=180^0\)
=>\(\widehat{ACB}=40^0\)
ta có: \(\widehat{ADB}+\widehat{ADC}=180^0\)
=>\(\widehat{ADC}+70^0=180^0\)
=>\(\widehat{ADC}=110^0\)
Xét ΔADC có \(\widehat{DAC}< \widehat{DCA}< \widehat{ADC}\)
mà DC,DA,AC lần lượt là cạnh đối diện của các góc DAC,DCA,ADC
nên DC<DA<AC
a: \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
=>\(60x^2+35x-60x^2+15x=-100\)
=>50x=-100
=>x=-2
b: \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)=5\)
=>\(6x^2+2x-3x-1+9x-6x^2+12-8x=5\)
=>11=5(loại)
c: \(6x^2-\left(2x-5\right)\left(3x-2\right)=7\)
=>\(6x^2-\left(6x^2-4x-15x+10\right)=7\)
=>19x-10=7
=>19x=17
=>\(x=\dfrac{17}{19}\)
d: \(\left(x-3x^2\right)\left(x+6\right)+x\left(3x^2+17x\right)=24\)
=>\(x^2+6x-3x^3-18x^2+3x^3+17x^2=24\)
=>6x=24
=>x=4
e: \(\left(x-1\right)\left(x^2+x+1\right)+9=0\)
=>\(x^3-1+9=0\)
=>\(x^3+8=0\)
=>\(x^3=-8\)
=>x=-2
f: \(\left(12x-5\right)\left(4x-1\right)-\left(3x-7\right)\left(16x+1\right)=81\)
=>\(48x^2-12x-20x+5-\left(48x^2+3x-112x-7\right)=81\)
=>-32x+5+109x+7=81
=>77x=81-12=69
=>\(x=\dfrac{69}{77}\)
Gọi d=ƯCLN(3n+1;4n+1)
=>\(\left\{{}\begin{matrix}3n+1⋮d\\4n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12n+4⋮d\\12n+3⋮d\end{matrix}\right.\)
=>\(12n+4-12n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(4n+1;3n+1)=1
=>\(\dfrac{3n+1}{4n+1}\) là phân số tối giản