lần thứ hai đăng :( mong sự giúp đỡ
Giả sử ta có một khối đa diện đều, mỗi mặt có p cạnh và mỗi đỉnh giáp q mặt
Chứng minh bất đẳng thức : \(2\pi>\frac{\left(p-2\right)q\pi}{p}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)
\(\Leftrightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{x}{\sqrt{x}-1}\)
b. ta có \(x=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
vậy \(P=\frac{4}{\sqrt{4}-1}=4\)
c.\(P=\frac{x}{\sqrt{x}-1}=\sqrt{x}-1+\frac{1}{\sqrt{x}-1}+2\ge2+2=4\)
vậy \(\sqrt{P}\ge2\)
\(x^4+\sqrt{x^2+2}=2\)
Đặt t = x2
pt <=> \(t^2+\sqrt{t+2}=2\)
<=> \(\sqrt{t+2}=2-t^2\)( 0 ≤ t ≤ √2 )
Bình phương hai vế
<=> t + 2 = t4 - 4t2 + 4
<=> t4 - 4t2 - t + 2 = 0
<=> t4 - 2t3 + 2t3 - 4t2 - t + 2 = 0
<=> t3( t - 2 ) + 2t2( t - 2 ) - ( t - 2 ) = 0
<=> ( t - 2 )( t3 + 2t2 - 1 ) = 0
<=> ( t - 2 )( t3 + t2 + t2 - 1 ) = 0
<=> ( t - 2 )[ t2( t + 1 ) + ( t - 1 )( t + 1 ) ] = 0
<=> ( t - 2 )( t + 1 )( t2 + t - 1 ) = 0
<=> t - 2 = 0 hoặc t + 1 = 0 hoặc t2 + t - 1 = 0
<=> t = \(\frac{-1+\sqrt{5}}{2}\)( đã loại các nghiệm ktm )
=> \(x^2=\frac{-1+\sqrt{5}}{2}\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{5}}{2}}\)
Vậy ...
\(M=\left(x-1\right)4+\left(3-x\right)4+6\left(x^2-4x+3\right)2+2013\)
\(\Leftrightarrow M=\left(x-1+3-x\right)4+12\left(x^2-4x+4\right)-12+2013\)
\(\Leftrightarrow M=12\left(x-2\right)^2+2019\)
Mà \(12\left(x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow GTNN=2019\)
\(M=\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
Đặt \(x-2=a\)
\(\Rightarrow M=\left(a+1\right)^2+\left(a-1\right)^2+6\left(a^2-1\right)^2+2013\)
\(=8a^4+2021\ge2021\)
Dấu = xảy ra khi:
\(a=0\)
\(\Rightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Áp dụng BĐT Cô-si: \(\sqrt{\frac{x}{y+z+2x}.\frac{1}{4}}\le\frac{\frac{x}{y+z+2x}+\frac{1}{4}}{2}\le\frac{\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\frac{1}{4}}{2}\)\(\Rightarrow\sqrt{\frac{x}{y+z+2x}}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\frac{1}{4}\)
Tương tự: \(\sqrt{\frac{y}{z+x+2y}}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\); \(\sqrt{\frac{z}{x+y+2z}}\le\frac{1}{4}\left(\frac{z}{y+z}+\frac{z}{z+x}\right)+\frac{1}{4}\)
Cộng theo vế, ta được: \(VT\le\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z
lớp 9 có học bài này à
ko có radian thì ghi \(2>\frac{\left(p-2\right)q}{p}\) cho rồi