K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Gọi 3 số cần tìm là a ,b,c

ta có\(\frac{a}{5}=\frac{b}{6}=\frac{c}{9}\Leftrightarrow b-a=12\)

Ap dụng ......................................................................................................

ta có \(\frac{b-a}{6-5}=\frac{12}{1}=12\)

\(\frac{a}{5}=12\Rightarrow a=12.5=60\)

\(\frac{b}{6}=12\Rightarrow b=12.6=72\)

\(\frac{c}{9}=12\Rightarrow c=12.9=108\)

1 tháng 12 2016

Câu a) Áp dụng định lí Pytago với  tam giác ABC vuông tại A ( góc A=90).

Câu b) Chứng minh được tam giác BAC=TAM GIÁC DAC( trường hợp cạnh góc cạnh).

=>BC=DC(2 cạnh tương ứng)>

=>tam giác BDC cân tại C(định nghĩa). (1)

góc BAC=90độ(giả thiết)=> AC vuông góc BD=> AC là đường cao (định nghĩa). (2)

Từ (1) và (2)=> Ac là phân giác của góc BCD (định lí)=> góc BCA=góc DCA (định nghĩa).

chứng minh được: tam giác BEC= tam giác DEC (cạnh góc cạnh).

Câu c) Xét tam giác BDC cân (cmt) có: AC là đường cao (AC vuông góc với BD).

=> AC là đường trung tuyến (định lí) (3)       Có: CE/CE=6-2/6=2/3. (4)

Từ (3) và (4)=> E là trọng tâm tam giác BDC. => DE là đường trung tuyến của tam giác BDC.

Vậy DE đi qua trung điểm cạnh BC.

31 tháng 1 2022

Answer:

Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:

\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Mà x > 10 => x = 11

Với x = 11, lại có y < 30

\(\Rightarrow2y+5< 65;2y+5⋮11\)

Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11

Trường hợp 1: \(2y+5=11\)

\(\Rightarrow y=3\)

\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)

Trường hợp 2: \(2y+5=22\)

\(\Rightarrow2y=17\) (Loại)

Trường hợp 3: \(2y+5=33\)

\(\Rightarrow y=14\)

\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)

Trường hợp 4: \(2y+5=44\)

\(\Rightarrow2y=39\) (Loại)

Trường hợp 5: \(2y+5=55\)

\(\Rightarrow y=25\)

\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)

Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)