K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2021

f/kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

24 tháng 3 2021

????????????

24 tháng 3 2021

không đăng linh tinh nha

Dễ thấy P là điểm chính giữa \widebatEF\widebatEF nên D,N,P thẳng hàng

Cần chứng minh ˆIMC=ˆPDCIMC^=PDC^

Ta có : ˆIMC=ˆMIB+ˆB1=12ˆBIC+ˆB1=12(180oˆB1ˆC1)+ˆB1IMC^=MIB^+B1^=12BIC^+B1^=12(180o−B1^−C1^)+B1^

=12(180oˆABC2ˆACB2)+ˆABC2=90o+ˆABC4ˆACB4=12(180o−ABC^2−ACB^2)+ABC^2=90o+ABC^4−ACB^4

ˆPDC=ˆPDE+ˆEDC=12ˆEDF+ˆEDCPDC^=PDE^+EDC^=12EDF^+EDC^=12(180oˆFDBˆEDC)+ˆEDC=12(180o−FDB^−EDC^)+EDC^

=90oˆFDB2+ˆEDC2=90o90oˆB12+90oˆC12=90o−FDB^2+EDC^2=90o−90o−B1^2+90o−C1^2

=90o+ˆABC4ˆACB4=90o+ABC^4−ACB^4

ˆIMC=ˆPDCIM//ND⇒IMC^=PDC^⇒IM//ND

b) Theo câu a suy ra ˆMID=ˆIDPMID^=IDP^

Mà ΔPIDΔPIDcân tại I ( do IP = ID ) nên ˆIPD=ˆIDPIPD^=IDP^

Suy ra ˆMID=ˆIPD=ˆQPNMID^=IPD^=QPN^

ΔIDMΔPQN(g.g)⇒ΔIDM≈ΔPQN(g.g)

c) từ câu b IMPN=IDPQ=IPPQ⇒IMPN=IDPQ=IPPQ( 1 ) 

Theo hệ thức lượng, ta có : IQ.IA=IE2=IP2IQ.IA=IE2=IP2

Do đó : QPIP=1IQIP=1IPIA=PAIAQPIP=1−IQIP=1−IPIA=PAIA

Suy ra  IPQP=IAPAIPQP=IAPA( 2 )

Từ ( 1 ) và ( 2 ) IMPN=IAPA⇒IMPN=IAPAkết hợp với IM // PN suy ra A,M,N thẳng hàng