Cho hai đường tròn tâm \(O_1,O_2\) tiếp xúc ngoài nhau tại $A$. Trên đường tròn \(\left(O_1\right)\) lấy hai điểm $B$, $C$ phân biệt khác $A$. Các đường thẳng $BA$, $CA$ cắt đường tròn \(\left(O_2\right)\) tại $P$ và $Q$. Chứng minh $PQ$//$BC$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha
ta có góc ACH=gócABC(vì cùng phụ với góc CAB)
MCA=ABC(vì cùng chắn cung AC)
=> góc MCA=ACH hay AC là tia phân giác của góc MCH
\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=0\)
\(\Leftrightarrow\sqrt{3x^2+5x+1}=\sqrt{3x^2+5x-7}\)
ĐKXĐ : ...
Bình phương hai vế
\(\Leftrightarrow3x^2+5x+1=3x^2+5x-7\)
\(\Leftrightarrow3x^2+5x+1-3x^2-5x+7=0\)
\(\Leftrightarrow0x+8=0\)
\(\Leftrightarrow0=8\left(voli\right)\)
Vậy phương trình vô nghiệm
2( x2 - 2x )2 + 3x2 - 6x + 1 = 0
<=> 2( x2 - 2x )2 + 3( x2 - 2x ) + 1 = 0
Đặt t = x2 - 2x ta được phương trình bậc 2 ẩn t :
2t2 + 3t + 1 = 0 (*)
Dễ thấy (*) có a - b + c = 2 - 3 + 1 = 0 nên có hai nghiệm phân biệt t1 = -1 ; t2 = -c/a = -1/2
=> x2 - 2x = -1 hoặc x2 - 2x = -1/2
<=> x2 - 2x + 1 = 0 hoặc x2 - 2x + 1/2 = 0
+) x2 - 2x + 1 = 0
Δ = b2 - 4ac = 4 - 4 = 0
Δ = 0 nên pt có nghiệm kép x1 = x2 = -b/2a = 1
+) x2 - 2x + 1/2 = 0
Δ = b2 - 4ac = 4 - 2 = 2
Δ > 0 nên pt có hai nghiệm phân biệt : \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2}\)
Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2};x_3=1\)
Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)
Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta thấy \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)
Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)
\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)
Dấu "=" xảy ra \(< =>a=b=c=3\)
bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn
Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\) và \(a^2+b^2+c^2\le abc\)
\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)
Tương tự các cái khác ta có
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"
Học tốt
a,Ta có góc ABC =góc BAC=góc BCA=60•(ABC là Δ đều ) =>BPA=60•
Xét ΔBAQ và ΔBAP có
góc A chung
góc ABQ=góc BPA(60•)
=> ΔBAQ~ΔBPA(g.g)
=>BA/PA=AQ/AB
=>BA2=AP.AQ mà AB=BC
=>BC2=AP.AQ(đpcm )
b,trên đoạn PA lây điểm M sao cho PM=PB thì ta có Tam giác PMB là tam giác đều
vì góc ACB=60=PBM=>ABM=PBC
=> tam giác ABM = tam giác CBP(c.g.c)=> AM=PC
=>PB+PC==PM+AM=PA
ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP
xAC=QAy(hai góc đối đỉnh)
theo tính chất của 2 góc được tạo bởi tia tiếp tuyến
=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)
theo tính chất của góc nội tiếp,ta có
=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)
từ (1),(2)=> ABC=APQ
=> QP//BC