K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.

Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=2m2{x1+x2=3x1x2=−2m2

Điều kiện x12=4x22(x12x2)(x1+2x2)=0[x1=2x2x1=2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2

Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2{x1=2x2=12=2m2m{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.

Với x1=2x2,x1=−2x2, giải hệ {x1+x2=3x1=2x2{x1=6x2=318=2m2m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3

Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.

Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.

Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=2m2{x1+x2=3x1x2=−2m2

Điều kiện x12=4x22(x12x2)(x1+2x2)=0[x1=2x2x1=2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2

Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2{x1=2x2=12=2m2m{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.

Với x1=2x2,x1=−2x2, giải hệ {x1+x2=3x1=2x2{x1=6x2=318=2m2m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3

Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.

19 tháng 5 2023

 32≤�≤223m2.

19 tháng 5 2023

m=±27 

19 tháng 5 2023

m=1.

19 tháng 5 2023

m<2

19 tháng 5 2023

 �=613m=136
 

19 tháng 5 2023

 �=0m=0

21 tháng 3 2021
Đó nhá. Nnnjjahihi

Bài tập Tất cả

19 tháng 5 2023

m=3  

21 tháng 3 2021

b,

Trước tiên để pt có hai nghiệm phân biệt thì:

Δ=22(m+2)>0m<2Δ′=22−(m+2)>0⇔m<2

Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:

{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2

Khi đó:

x21+x22=3(x1+x2)x12+x22=3(x1+x2)

(x1+x2)22x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)

422(m+2)=3.4⇔42−2(m+2)=3.4

m+2=2m=0⇔m+2=2⇒m=0 (thỏa mãn)

Vậy m=0

19 tháng 5 2023

Đáp số: �=−3m=3