phân tích các đa thức sau thành nhân tử x^4 -4x^3-8x^2+8x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, bạn xem lại đề nhé
2, \(3x^3-6x^2+3x=3x\left(x^2-2x+1\right)=3x\left(x-1\right)^2\)
3, \(x^3+3x^2-3x-9=x^2\left(x+3\right)-3\left(x+3\right)=\left(x^2-3\right)\left(x+3\right)\)
4,\(x^2-y^2-2y-1=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
5, \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)
6, \(x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)
7, \(3x^2-4x-7=3x^2-4x-3-4=3\left(x^2-1\right)-4\left(x+1\right)\)
\(=\left(3x-3\right)\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(3x-7\right)\)
Phân tích đa thức thành nhân tử:
x^3-x+y^3-y
= (y+x)(y^2-xy+x^2-1)
x^2+x-6
= (x-2)(x+3)
2x^2+3x-5
= (x-1)(2x+5)
x^4+3x^3+x+3
= (x+1)(x+3)(x^2-x+1)
\(x^3-x+y^3-y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)
\(2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
\(x^4+3x^3+x+3\)
\(=x^3\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x^3+1\right)=\left(x+3\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
Trả lời:
c, \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9.x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15\)
\(\Leftrightarrow45x+9=15\)
\(\Leftrightarrow45x=6\)
\(\Leftrightarrow x=\frac{2}{15}\)
Vậy x = 2/15 là nghiệm của pt.
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
Vậy x = 7 là nghiệm của pt.
e, \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6=-19\)
\(\Leftrightarrow12x-4=-19\)
\(\Leftrightarrow12x=--15\)
\(\Leftrightarrow x=-\frac{5}{4}\).
Vậy x = - 5/4 là nghiệm của pt.
g, \(3x\left(x-2\right)-x\left(1+3x\right)=14\)
\(\Leftrightarrow3x^2-6x-x-3x^2=14\)
\(\Leftrightarrow-7x=14\)
\(\Leftrightarrow x=-2\)
Vậy x = - 2 là nghiệm của pt.
h, \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
\(\Leftrightarrow9x^2+6x+1+25x^2-20x+4=34\left(x^2-4\right)\)
\(\Leftrightarrow34x^2-14x+5=34x^2-136\)
\(\Leftrightarrow34x^2-14x+5-34x^2+136=0\)
\(\Leftrightarrow-14x+151=0\)
\(\Leftrightarrow-14x=-151\)
\(\Leftrightarrow x=\frac{151}{14}\)
Vậy x = 151/14 là nghiệm của pt.
i, \(x^3+3x^2+3x+1=125\)
\(\Leftrightarrow\left(x+1\right)^3=5^3\)
\(\Rightarrow x+1=5\)
\(\Leftrightarrow x=4\)
Vậy x = 4 là nghiệm của pt.
\(x\left(2-3x\right)+\left(3x^2-x^2\right):x\)
\(=2x-3x^2+3x^2-x\)
\(=x\)
\(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)
\(=2x^2-6xy-4x^2+6xy\)
\(=-2x^2\)
a, \(A=\left(5x-2\right)\left(x+1\right)-\left(x-3\right)\left(5x+1\right)-17\left(x+3\right)\)
\(=5x^2+3x-2-5x^2+14x+3-17x-51=-50\)
Vậy biểu thức ko phụ thuộc giá trị biến x
b, \(B=\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)\)
\(=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)
Vậy biểu thức ko phụ thuộc giá trị biến x
d, \(D=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
e, \(E=\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3+1-x^3+1=2\)
Vậy biểu thức ko phụ thuộc giá trị biến x
\(\left(4x+1\right)\left(12x-1\right)\left(3x-2\right)\left(x+1\right)-4\) (Sửa đề)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x-1=n\)
\(=\left(n+3\right)n-4\)
\(=n^2+3n-4\)
\(=n^2-n+4n-4\)
\(=n\left(n-1\right)+4\left(n-1\right)\)
\(=\left(n-1\right)\left(n+4\right)\)
\(=\left(12x^2+11x-1-1\right)\left(12x^2+11x-1+4\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
\(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\)
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)(1)
Đặt \(\left(3x^2+7x+4\right)=n\)lúc đó (1):
\(\left(12n+1\right)n=6\)
\(\Rightarrow\hept{\begin{cases}n=0,75\\n=\frac{2}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
x4 - 4x3 - 8x2 + 8x
= x(x3 - 4x2 - 8x + 8)
= x[x3 + 8 - 4x(x + 2)]
= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)]
= x(x + 2)(x2 - 6x + 4)
= x(x + 2)(x2 - 6x + 9 - 5)
= \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)
\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)
\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)
\(=x\left(x^2-6x+4\right)\left(x+2\right)\)
\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)
\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)