Tính C = 3/(1*2)2+5/(2*3)2+7/(3*4)2+...+19/(9*10)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`b,`
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
Ta thấy: `8 = 7 + 1 = x + 1`
Thay `8 = x + 1` vào, ta có:
\(x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2.\)
\(\left|2x-3\right|-x=\left|2-x\right|\)
TH1: \(\dfrac{3}{2}\le x\le2\)
\(\Rightarrow\left(2x-3\right)-x=2-x\)
\(\Leftrightarrow x-3=2-x\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(ktm\right)\)
TH2: \(x>2\)
\(\Rightarrow\left(2x-3\right)-x=x-2\)
\(\Leftrightarrow x-3=x-2\)
\(\Leftrightarrow0=1\) (vô lý)
TH3: \(x< \dfrac{3}{2}\)
\(\Rightarrow\left(3-2x\right)-x=2-x\)
\(\Leftrightarrow3-3x=2-x\)
\(\Leftrightarrow3-2=-x+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy: ....
Ta có: \(2\) là số tự nhiên \(\Rightarrow2^{32}\) là số tự nhiên
\(\Rightarrow2^{32}+1\) là số tự nhiên
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-2}{4}=\dfrac{\left(x-1\right)-2\left(y-2\right)+3\left(z-2\right)}{2-2.3+3.4}=\dfrac{x-2y+3z+\left(-1+4-6\right)}{2-6+12}\\ =\dfrac{14-3}{8}=\dfrac{11}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{11}{8}.2=\dfrac{11}{4}\\y-2=\dfrac{11}{8}.3=\dfrac{33}{8}\\z-2=\dfrac{11}{8}.4=\dfrac{11}{2}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{15}{4}\\y=\dfrac{49}{8}\\z=\dfrac{15}{2}\end{matrix}\right.\)
Ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-2}{4}=\dfrac{2y-4}{6}\)
\(=\dfrac{3z-6}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-6\right)}{2-6+12}\)
\(=\dfrac{x-2y+3z-3}{8}=\dfrac{14-3}{8}=\dfrac{11}{8}\)
(áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(x-2y+3z=14\))
Suy ra:
\(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{11}{8}\\\dfrac{y-2}{3}=\dfrac{11}{8}\\\dfrac{z-2}{4}=\dfrac{11}{8}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{11\cdot2}{8}=\dfrac{11}{4}\\y-2=\dfrac{11\cdot3}{8}=\dfrac{33}{8}\\z-2=\dfrac{11\cdot4}{8}=\dfrac{11}{2}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{15}{4};y=\dfrac{49}{8};z=\dfrac{15}{2}\)
Vậy \(x=\dfrac{15}{4};y=\dfrac{49}{8};z=\dfrac{15}{2}\)
a) x là số dương hay x>0
\(\Rightarrow\dfrac{a-10}{2020}>0\\ \Rightarrow a-10>0\left(Do2020>0\right)\\ \Rightarrow a>10\)
b) x là số âm hay x<0
\(\Rightarrow\dfrac{a-10}{2020}< 0\\ \Rightarrow a-10< 0\left(Do2020>0\right)\\ \Rightarrow a< 10\)
c) x không là số dương cũng không là số âm hay x=0
\(\Rightarrow\dfrac{a-10}{2020}=0\\ \Rightarrow a-10=0\\ \Rightarrow a=10\)
Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHCΔAHC.
=> MK // AC. Ta lại có AC⊥ABAC⊥AB nên
Tam giác ABM có:AH⊥BMAH⊥BM và MK⊥ABMK⊥AB
=> K là trực tâm, suy ra BK⊥AMBK⊥AM.
Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHCΔAHC.
=> MK // AC. Ta lại có AC⊥ABAC⊥AB nên
Tam giác ABM có:AH⊥BMAH⊥BM và MK⊥ABMK⊥AB
=> K là trực tâm, suy ra BK⊥AMBK⊥AM.
`\frac{x+2}{3}=\frac{y-5}{4}=\frac{z+2}{5}` và `2x-3y+z=-23` (1)
Áp dụng tính chất của dãy tỉ số bằng nhau và (1), ta được:
`\frac{x+2}{3}=\frac{y-5}{4}=\frac{z+2}{5}=\frac{2x+4}{6}=\frac{3y-15}{12}`
`=\frac{2x+4-(3y-15)+z+2}{6-12+5}`
`=\frac{(2x-3y+z)+21}{-1}`
`=\frac{-23+21}{-1}=\frac{-2}{-1}=2`
\(\Rightarrow \begin{cases} x+2=2 .3=6\\ y-5=2.4=8\\ z+2=2.5=10 \end{cases}\Rightarrow \begin{cases} x=4\\ y=13\\ z=8 \end{cases}\)
Kẻ DK//AC(K\(\in\)AC)
Ta có: DK//AC
=>\(\widehat{DKB}=\widehat{ACB}\)(hai góc đồng vị)
=>\(\widehat{DKB}=\widehat{DBK}\)
=>DK=DB
mà DB=CE
nên DK=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
Do đó: DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của KC
=>K,I,C thẳng hàng
mà B,K,C thẳng hàng
nên B,I,C thẳng hàng
Tổng quát: \(\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
\(\Rightarrow C=\dfrac{9\left(9+2\right)}{\left(9+1\right)^2}=\dfrac{9.11}{10^2}=\dfrac{99}{100}\)
Vậy \(C=\dfrac{99}{100}\)