K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) \(\left(x,y,z>0\right)\)

Khi đó 

\(VT=\frac{1}{\frac{1}{x^2}\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\frac{1}{y^2}\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\frac{1}{z^2}\left(\frac{1}{x}+\frac{1}{y}\right)}\) và \(xyz=1\)

\(=\frac{x^2}{\frac{y+z}{yz}}+\frac{y^2}{\frac{z+x}{zx}}+\frac{z^2}{\frac{x+y}{xy}}=\frac{x^2yz}{y+z}+\frac{y^2zx}{z+x}+\frac{z^2xy}{x+y}\)

\(=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+zx}+\frac{y^2}{yz+xy}+\frac{z^2}{zx+yz}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

22 tháng 3 2021

đk: \(y+3\ge0\)

BĐT cần chứng minh tương đương

\(BPT\Leftrightarrow1-2y-y^2\le\left(y+3\right)^2=y^2+6y+9\)

\(\Leftrightarrow2y^2+8y+8\ge0\)

\(\Leftrightarrow2\left(y+2\right)^2\ge0\left(\forall y\right)\)

Dấu "=" xảy ra khi: \(y+2=0\Rightarrow y=-2\)

22 tháng 3 2021

BĐT cần chứng minh tương đương:

\(2x+\sqrt{12-2x^2}\le6\)

\(\Leftrightarrow\sqrt{12-2x^2}\le6-2x\)

\(\Rightarrow12-2x^2\le\left(6-2x\right)^2\)

\(\Leftrightarrow12-2x^2\le36-24x+4x^2\)

\(\Leftrightarrow6x^2-24x+24\ge0\)

\(\Leftrightarrow6\left(x-2\right)^2\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x-2=0\Rightarrow x=2\)

22 tháng 3 2021

1) Trước hết ta sẽ chứng minh BĐT với 2 số

Với x,y,z,t > 0 ta luôn có: \(\frac{x^2}{y}+\frac{z^2}{t}\ge\frac{\left(x+z\right)^2}{y+t}\)

BĐT cần chứng minh tương đương:

\(BĐT\Leftrightarrow\frac{x^2t+z^2y}{yt}\ge\frac{\left(x+z\right)^2}{y+t}\Leftrightarrow\left(x^2t+z^2y\right)\left(y+t\right)\ge yt\left(x+z\right)^2\)

(Biến đổi tương đương)

Khi bất đẳng thức trên đúng ta sẽ CM như sau:

\(\frac{a^2}{\alpha}+\frac{b^2}{\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b\right)^2}{\alpha+\beta}+\frac{c^2}{\gamma}\ge\frac{\left(a+b+c\right)^2}{\alpha+\beta+\gamma}\)

Dấu "=" xảy ra khi: \(\frac{a}{\alpha}=\frac{b}{\beta}=\frac{c}{\gamma}\)

22 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

22 tháng 3 2021

Áp dụng BĐT Cauchy-Schwarz ta có :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

22 tháng 3 2021

Áp dụng BĐT Bunhiacopxky:

\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Leftrightarrow2\left(x+y\right)\ge\left(x^2+y^2\right)^2\)

\(\Rightarrow4\left(x+y\right)^2\ge\left(x^2+y^2\right)^4\)  \(\left(1\right)\)

Áp dụng BĐT AM-GM: 

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow8\left(x^2+y^2\right)\ge\left(x^2+y^2\right)^4\)

\(\Rightarrow8\ge\left(x^2+y^2\right)^3\)

\(\Rightarrow2\ge x^2+y^2\)hay \(x^2+y^2\le2\)

13 tháng 7 2021

Áp dụng bất đẳng thức Cô si cho ba số dương ta có    

        x^3+x^3+1\ge3\sqrt[3]{x^3.x^3.1}\Leftrightarrow2x^3+1\ge3x^2x3+x3+133x3.x3.12x3+13x2, đẳng thức xảy ra khi và chỉ khi x=1x=1.

Tương tự,  2y^3+1\ge3y^22y3+13y2. Cộng theo vế hai bất đẳng thức nhận được ta có

             2\left(x^3+y^3\right)+2\ge3\left(x^2+y^2\right)2(x3+y3)+23(x2+y2)

Sử dụng giả thiết  x^3+y^3=2x3+y3=2 suy ra đpcm. Đẳng thức xảy ra khi và chỉ khi      x=y=1x=y=

23 tháng 3 2021

A B C D M O

a/ Ta có

\(AD\perp OA\) (AD là tiếp tuyến)

O là tâm đường tròn ngoại tiếp \(\Delta ABC\) => AO là trung tuyến của \(\Delta ABC\Rightarrow BC\perp AO\)  (trong tg cân đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao)

=> AD//BC (cùng vuông góc với OA); mà AD=BC (gt) => ABCD là hình bình hành ( Tứ giác có 1 cặp cạnh đối // và bằng nhau thì tứ giác đó là hình bình hành)

b/ Do ABCD là hình bình hành nên AC cắt BD tại trung điểm mỗi đường

Mặt khác ta cũng có OM đi qua trung điểm của AC (Hai tiếp tuyến cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn thì vuông góc và chia đôi dây cung nối 2 tiếp điểm)

=> AC; BD; OM đồng quy

22 tháng 8 2021

) Có:

a) 

Vì vậy AD = BC và AD//BC nên tứ giác ABCD là hình bình hành.
b) Theo tứ giác ABCD là hình thành nên BD và AC cắt nhau tại trung điểm của mỗi đường.
Theo tính chất của hai tiếp tuyến cắt nhau thì MA=MC và OM là tia phân giác góc AMC.
AM = MC nên tam giác AMC cân tại M và MO là tia phân giác của tam giác AMC nên OM cũng đi qua trung điểm của AC.
Suy ra ba đường thẳng AC, BD, OM đồng quy.

22 tháng 3 2021

Áp dụng bất đẳng thức AM-GM và sử dụng giả thiết x+y+z=1 ta có :

\(1+\frac{1}{x}=\frac{x+1}{x}=\frac{x+x+y+z}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}\)

CMTT ta có : \(1+\frac{1}{y}\ge\frac{4\sqrt[4]{xy^2x}}{y}\)\(1+\frac{1}{z}\ge\frac{4\sqrt[4]{xyz^2}}{z}\)

Nhân vế với vế các bđt trên ta được đpcm

Đẳng thức xảy ra <=> x=y=z=1/3

13 tháng 7 2021

Sử dụng giả thiết x+y+z=1x+y+z=1 và áp dụng bất đẳng thức Cô si cho bốn số dương ta có 

        1+\frac{1}{x}=\frac{x+1}{x}=\frac{x+x+y+z}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}1+x1=xx+1=xx+x+y+zx44x2yz

Tương tự       1+\frac{1}{y}\ge\frac{4\sqrt[4]{xy^2z}}{y}1+y1y44xy2z  và    1+\frac{1}{z}\ge\frac{4\sqrt[4]{xyz^2}}{z}1+z1z44xyz2.

Nhân theo vế ba bất đẳng thức vừa nhận được suy ra đpcm.

Đẳng thức xảy ra khi và chỉ khi  x=y=z=\frac{1}{3}x=y=z=31.

22 tháng 3 2021

Đặt \(P=\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\)

\(\Rightarrow P^2=\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\)

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:

\(\left(1.\sqrt{4x+1}+1.\sqrt{4y+1}+1.\sqrt{4z+1}\right)^2\)\(\le\left(1^2+1^2+1^2\right)\left[\left(\sqrt{4x+1}\right)^2+\left(\sqrt{4y+1}\right)^2+\left(\sqrt{4z+1}\right)^2\right]\)

\(\Leftrightarrow\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\)\(\le3\left(4x+1+4y+1+4z+1\right)\)

\(\Leftrightarrow P^2\le3\left[4\left(x+y+z\right)+3\right]\)

\(\Leftrightarrow P^2\le3\left(4.3+3\right)\)(vì \(x+y+z=3\))

\(\Leftrightarrow P^2\le3\left(12+3\right)=3.15=45\)

\(\Leftrightarrow P\le\sqrt{45}=3\sqrt{5}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\x+y+z=3\end{cases}}\Leftrightarrow x=y=z=1\)

Vậy với \(x,y,z>0;x+y+z=3\)thì \(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le3\sqrt{5}\)

13 tháng 7 2021

Bất đẳng thức cần chứng minh tương đương với

                       \sqrt{5\left(4x+1\right)}+\sqrt{5\left(4y+1\right)}+\sqrt{5\left(4z+1\right)}\le155(4x+1)+5(4y+1)+5(4z+1)15

Áp dụng bất đẳng thức Cô si cho hai số dương ta có

               \sqrt{5\left(4x+1\right)}\le\frac{5+4x+1}{2}=3+2x5(4x+1)25+4x+1=3+2x

Tương tự   \sqrt{5\left(4y+1\right)}\le3+2y;\sqrt{5\left(4z+1\right)}\le3+2z5(4y+1)3+2y;5(4z+1)3+2z

Cộng theo vế ba bất đẳng thức nhận được ta có

       \sqrt{5\left(4x+1\right)}+\sqrt{5\left(4y+1\right)}+\sqrt{5\left(4z+1\right)}\le9+2\left(x+y+z\right)=155(4x+1)+5(4y+1)+5(4z+1)9+2(x+y+z)=15 (do giả thiết x,y,zx,y,z có tổng bằng 1.

Đẳng thức xảy ra khi và chỉ khi

\left\{{}\begin{matrix}4x+1=4y+1=4z+1=5\\x+y+z=3\end{matrix}\right.{4x+1=4y+1=4z+1=5x+y+z=3 \Leftrightarrow x=y=z=1x=y=z=1