K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)(1)

Đặt a + b + c - 3 = x 

Vì a,b,c > 1 => x > 0

=>  \(\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{\left(x+3\right)^2}{x}=\frac{x^2+6x+9}{x}=x+6+\frac{9}{x}\ge2\sqrt{x\cdot\frac{9}{x}}+6=12\)( AM-GM )

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\)

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = 3 => a=b=c=2

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1^2}{2\cdot1}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c=1/3