Cho x,y,z>0 và \(xyz=1\). Tìm Max của \(P=\frac{1}{x^2+2y+3}+\frac{1}{y^2+2z+3}+\frac{1}{z^2+2x+3}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
29 tháng 3 2021
Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 15 )
= 4( m + 1 )2 - 8m + 60
= 4( m2 + 2m + 1 ) - 8m + 60
= 4m2 + 8m + 4 - 8m + 60
= 4m2 + 64 ≥ 64 > 0 ∀ m
hay pt luôn có hai nghiệm phân biệt ( đpcm )
KD
0
S
1
HD
28 tháng 3 2021
P=1+\(\frac{1}{\sqrt{x}-1}\)
Vì \(\frac{1}{\sqrt{x}-1}\)>0
suy ra Pmax \(\Leftrightarrow\)\(\frac{1}{\sqrt{x}-1}\)nhỏ nhất
Mà \(\frac{1}{\sqrt{x}-1}\)nhỏ nhất\(\Leftrightarrow\)\(\sqrt{x}-1\)là số nguyên dương nhỏ nhất là 1
suy ra \(\sqrt{x}\)=2\(\Rightarrow\)x=4
NH
0
Ta có:
\(P=\frac{1}{x^2+2y+3}+\frac{1}{y^2+2z+3}+\frac{1}{z^2+2x+3}\)
\(\le\frac{1}{2}\left(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\right)\)
Đặt \(x=a^3;y=b^3;z=c^3\)
\(\Rightarrow abc=1\)
Từ đây ta có:
\(2P\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)
\(\le\frac{1}{\left(a+b\right)ab+1}+\frac{1}{\left(b+c\right)bc+1}+\frac{1}{\left(c+a\right)ac+1}\)
\(=\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
Vậy \(P\le\frac{1}{2}\)
mình nghĩ đề sai vì hôm kia đến h nghĩ mãi không ra D: