Cho tam giác ABC cân tại A .Kẻ tia phân giác BD của góc B (D thuộc AC).Thừ D kẻ DK vuông góc BC (K thuộc BC)
a) CM: DA=DK
b) kéo dài KD cắt BA tại H .CM: tam giác DKC= tam giác DAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ô tô đã đi được số phần quãng đường trong 2 giờ là:
2/5+3/10=7/10(quãng đường)
Đ/s:7/10 quãng đường.
Tích cho mình nhoaaa (\_/)
(•.• )
♥️<)
Gọi số hộp bánh loại 1, loại 2, loại 3 cô Mai mua lần lượt là a(hộp),b(hộp),c(hộp)
(ĐIều kiện:\(a,b,c\in Z^+\))
Loại 1 giá 60k/hộp; loại 2 có giá là 40k/hộp và loại 3 có giá là 30k/hộp và số tiền cô Mai mua 3 loại bánh là bằng nhau nên ta có:
60000a=40000b=30000c
=>6a=4b=3c
=>\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Tổng số hộp bánh là 54 hộp nên a+b+c=54
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{54}{9}=6\)
=>\(a=6\cdot2=12;b=3\cdot6=18;c=4\cdot6=24\)
Vậy: cô Mai mua 12 hộp bánh loại 1; 18 hộp bánh loại 2; 24 hộp bánh loại 3
Bài 12:
a: (d): \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)
=>(d) đi qua T(-2;1) và có vecto chỉ phương là (-2;2)
(d')\(\perp\)(d) nên (d') nhận vecto (-2;2) làm vecto pháp tuyến
Phương trình (d') là:
-2(x-3)+2(y-1)=0
=>-(x-3)+(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
b: (d) có vecto chỉ phương là (-2;2)
=>(d) có vecto pháp tuyến là (2;2)=(1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+2+y-1=0
=>x+y+1=0
Tọa độ giao điểm H của (d) và (d') là:
\(\left\{{}\begin{matrix}x+y+1=0\\-x+y+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=-1\\-x+y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-3\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1-x=-1+\dfrac{3}{2}=\dfrac{1}{2}\end{matrix}\right.\)
c: A' đối xứng với A qua d
=>A'A\(\perp\)d
mà d'\(\perp\)d và \(A\in d'\)
nên d' chính là phương trình AA'
=>H là trung điểm của A'A
A(3;1); H(-3/2;1/2); A'(x;y)
H là trung điểm của A'A
=>\(\left\{{}\begin{matrix}x_A+x_{A'}=2\cdot x_H=-3\\y_A+y_{A'}=2\cdot y_H=2\cdot\dfrac{1}{2}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_{A'}+3=-3\\y_A+1=1\end{matrix}\right.\)
=>A'(-6;0)
Bài 13:
a: M(2;-5); N(4;-3)
Tọa độ tâm I là:
\(\left\{{}\begin{matrix}x=\dfrac{2+4}{2}=\dfrac{6}{2}=3\\y=\dfrac{-5+\left(-3\right)}{2}=-\dfrac{8}{2}=-4\end{matrix}\right.\)
I(3;-4); M(2;-5)
\(IM=\sqrt{\left(2-3\right)^2+\left(-5+4\right)^2}=\sqrt{2}\)
Phương trình (C) là:
\(\left(x-3\right)^2+\left(y+4\right)^2=IM^2=2\)
b: (C) có tâm là I(1;-2) và tiếp xúc với đường thẳng 4x-3y+5=0
=>Bán kính là \(R=d\left(I;4x-3y+5=0\right)=\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+5\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{15}{5}=3\)
Phương trình (C) là:
\(\left(x-1\right)^2+\left(y+2\right)^2=R^2=9\)
c: Gọi phương trình (C) là: \(x^2+y^2+2ax+2by+c=0\)
Thay x=1 và y=0 vào (C), ta được:
\(1^2+0^2+2\cdot a\cdot1+2\cdot b\cdot0+c=0\)
=>2a+c=-1(1)
Thay x=0 và y=-2 vào (C), ta được:
\(0^2+\left(-2\right)^2+2\cdot a\cdot0+2\cdot b\cdot\left(-2\right)+c=0\)
=>4-4b+c=0
=>-4b+c=-4(2)
Thay x=2 và y=3 vào (C), ta được:
\(2^2+3^2+2\cdot a\cdot2+2\cdot b\cdot3+c=0\)
=>4a+6b+c=-13(3)
Từ (1),(2),(3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+c=-1\\-4b+c=-4\\4a+6b+c=-13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a+4b=-1+4=5\\-2a-6b=-1+13=12\\2a+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2b=5+12=17\\2a+4b=5\\2a+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\2a=5-4b=5-4\cdot\dfrac{-17}{2}=5+34=39\\2a+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-\dfrac{17}{2}\\a=\dfrac{39}{2}\\c=-1-2a=-1-2\cdot\dfrac{39}{2}=-40\end{matrix}\right.\)
Vậy: (C): \(x^2+y^2+39x-17y-40=0\)
\(\left\{{}\begin{matrix}-3x+2y=-11\\x-3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3x+2y=-11\\3x-6y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-11+18=7\\x-3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{7}{4}\\x=3y+6=3\cdot\dfrac{-7}{4}+6=-\dfrac{21}{4}+6=\dfrac{3}{4}\end{matrix}\right.\)
a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔBAD=ΔBKD
=>DA=DK
b: Xét ΔDAH vuông tại A và ΔDKC vuông tại K có
DA=DK
\(\widehat{ADH}=\widehat{KDC}\)(hai góc đối đỉnh)
Do đó: ΔDAH=ΔDKC