giup em cau 1 voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) \(=\frac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\frac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)\(=\frac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}.\frac{\left(1-3x\right)^2}{2x\left(3x+5\right)}=\frac{1-3x}{2\left(1+3x\right)}\)
4) \(=\frac{x.x-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}.\frac{x^2+5x}{2x-5}+\frac{x}{5-x}\)\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{5}{x-5}+\frac{-x}{x-5}=\frac{5-x}{x-5}=-1\)
5) \(=\left[\frac{x^2+xy}{\left(x+y\right)\left(x^2+y^2\right)}+\frac{y}{x^2+y^2}\right]:\left[\frac{1}{x-y}-\frac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right]\)
\(=\frac{x+y}{x^2+y^2}:\frac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)\(=\frac{x+y}{x^2+y^2}.\frac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x-y\right)^2}=\frac{x+y}{x-y}\)
Bài 1 a
\(x^4+3x^3-6x^2-8x=x\left(x^3-8\right)+3x^2\left(x-2\right)\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)+3x^2\left(x-2\right)\)
\(=\left(x-2\right)\left[x\left(x^2+2x+4\right)+3x^2\right]\)
\(=x\left(x-2\right)\left(x^2+5x+4\right)=x\left(x-2\right)\left(x+1\right)\left(x+4\right)\)
Bài 2 :
a, \(8x^3y^5z:2x^2y^3=4xy^2z\)
b, \(\frac{1}{2}x^3y^5:\left(-\frac{3}{4x^2y^3}\right)=-\frac{2x^5y^8}{3}\)
c, \(\left(5x^5-x^3+3x^2\right):3x^2=\frac{5}{3}x^3-3x+1\)
\(B=x^2-x+13\)là số chính phương \(\Leftrightarrow4B=4x^2-4x+52\)là số chính phương.
\(4x^2-4x+52=n^2\)
\(\Leftrightarrow\left(2x-1\right)^2+51=n^2\)
\(\Leftrightarrow\left(n-2x+1\right)\left(n+2x-1\right)=51=1.51=3.17\)
Ta có bảng giá trị:
n-2x+1 | 1 | 3 | 17 | 51 |
n+2x-1 | 51 | 17 | 3 | 1 |
n | 26 | 10 | 10 | 26 |
x | 13 | 4 | -3 | -12 |
Vậy \(x\in\left\{-12,-3,4,13\right\}\)thỏa mãn ycbt.
lấy k là trung điểm của AB nên có Ek là đtb của tam giác ABC => Ek // BC và Ek = 1/2BC
k là trđ của AB => Ak = 1/2AB mà AD = 1/2AB => AD = 1/2Ak => D là trđ của Ak
có E là trđ của AC nên DE là đtb của tam giác AkC => DE // kC
từ đó cm đc kefc là hbh
=> ke = cf
mà ke = 1/2 bc
=> cf = 1/2bc
\(1.A=14x^2+16x-21x-24=14x^2-5x-24\)
\(2.A=3x^3-2x^2-15x+14\)
\(3.A=x^4-x^3+2x^2+7x-5\)
\(4.A=x^4-7x^3+3x^2+21x-18\)
\(5.A=4x^2-y^2\)
\(6.A=x^3-8y^3\)
\(7.A=x^3+27y^3\)
\(8.A=x^2y^2-1\)