Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x}{\sqrt{x}-1}=\frac{3x-3}{\sqrt{x}-1}+\frac{3}{\sqrt{x}-1}=3\sqrt{x}+3+\frac{3}{\sqrt{x}-1}\)
\(=3\left(\sqrt{x}-1\right)+\frac{3}{\sqrt{x}-1}+6\ge2\sqrt{3\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+6=12\)
Dấu \(=\)khi \(\sqrt{x}-1=1\Leftrightarrow x=4\).
Vậy \(minA=12\).
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có : \(A=\frac{3x}{\sqrt{x}-1}=\frac{3x-3\sqrt{x}+3\sqrt{x}-3+3}{\sqrt{x}-1}=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)
\(=3\sqrt{x}+3\frac{3}{\sqrt{x}-1}=\left[3\left(\sqrt{x}-1\right)+\frac{3}{\sqrt{x}-1}\right]+6\)
Vì \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\) nên \(\hept{\begin{cases}3\left(\sqrt{x}-1\right)>0\\\frac{3}{\sqrt{x}-1}>0\end{cases}}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(3\left(\sqrt{x}-1\right)+\frac{3}{\sqrt{x}-1}\ge2\sqrt{3\left(\sqrt{x}-1\right)\cdot\frac{3}{\sqrt{x}-1}}=6\)
hay A >= 12. Đẳng thức xảy ra <=> x = 4 ( tm )
Vậy ...
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)
\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)
Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2
Cách giải như sau
x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1
Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1
=x2+3x+1x =x2−x+14 +4x+1x +14
=(x−12 )2+4x+1x +14
Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2
Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2
Vậy minA=4+14 =174 <=> x = y = 1/2
HOK TỐT
EB=EC,EA=ED
AB = CD
=> cung AB = cung CD
=> Cung AD = cung BC
=> AD = BC
=> tam giác AED = tam giác CEB => EA = EC và EB = ED
=> E chia AB và CD thành những đoạn thẳng đôi một bằng nhau