K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

Lấy :

\(\left(7,75\times10\right)\div4\) là được nhé

HT

23 tháng 2 2022

9999999999999999999 điểm

23 tháng 2 2022

bấm máy tính đê anh ê

23 tháng 2 2022

9999999999999999999999999999999999999999999999

17 tháng 8 2022

a, Ta có:  xy//x'y' nên xAB ^ = ABy' (hai góc so le trong).

AA' là tia phân giác của xAB nên A1 = A2 = 1/2 xAB 

BB' là tia phân giác của ABy'  nên B1 = B2 = 1/2 ABy'

Từ trên ta có A2 = B1

Mà hai góc ở vị trí so le trong, nên

=> AA' // BB/ (có 2 góc so le trong bằng nhau)

b, xy//x'y' nên A1 = AA'B (2 góc so le trong)

AA'//BB' nên A1 = AB'B(2 góc đồng vị)

Vậy AA'B = AB'B 

18 tháng 8 2022

xx'yy'AB1212A'B'

a) x y / / x' y'xy//xy nên \widehat{x A B}=\widehat{A B y'}xAB=ABy (hai góc so le trong). (1)

AA'AA là tia phân giác của \widehat{xAB}xAB nên: \widehat{A_1}=\widehat{A_2}=\dfrac{1}{2} \widehat{xAB}A1=A2=21xAB. (2)

BB'BB là tia phân giác của \widehat{ABy'}ABy nên: \widehat{B_1}=\widehat{B_2}=\dfrac{1}{2} \widehat{ABy'}B1=B2=21ABy. (3)

Từ (2) và (3) ta có: \widehat{A_2}=\widehat{B_1} .A2=B1.

Mà hai góc ở vị trí so le trong, nên từ (1), (2), (3) ta có: AA'AA  //  BB'BB (có 2 góc so le trong bằng nhau).

b) x y / / x' y'xy//xy nên \widehat{A_1}=\widehat{A A' B}A1=AAB (hai góc so le trong).

AA' / / BB'AA//BB nên \widehat{A_1}=\widehat{AB' B}A1=ABB (hai góc đồng vị).

Vậy \widehat{AA' B}=\widehat{AB' B}AAB=ABB.

\(N=\frac{2}{3}x^2y^3\left(-\frac{6}{5}xy\right)\)

\(=\left(\frac{2}{3}.\frac{-6}{5}\right).\left(x^2.x\right).\left(y^3.y\right)\)

\(=-\frac{4}{5}x^3.y^4\)