K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

11 tháng 11 2021

loading...

 

24 tháng 4 2021

 Gọi x ﴾km﴿ là độ dài quãng đường AB, y ﴾giờ﴿ là thời gian dự định đi đến B lúc đầu. (Điều kiện x > 0, y > 1)
Thời gian đi từ A đến B với vận tốc 35km là: x/35 = y + 2 => x = 35.(y + 2)
Thời gian đi từ A và B với vận tốc 50km là : x/50 = y ‐ 1 => x = 50.(y - 1)
Ta có hệ phương trình:
35.(y + 2) = 50.( y - 1)
=> 35y + 70 = 50y - 50
=> y = 8
=> x =35.( y + 2) = 35.10 = 350 (km)
Vậy quãng đường AB là 350km.
Thời gian dự định đi lúc đầu là 8h

11 tháng 4 2022

 

Gọi quãng đường AB là x(x thuộc n*/km)           
gọi thời gian dự định là y(thuộc n*/ h)    
nếu ô tô đi với vận tốc 35km/h thì đến B muộn hơn 2h nên ta có : s/35 =y+2   
<=> s=35(y+2)  (1) 
nếu ô tô đi với vt 50km/h ( trình bày như trên)  từ đó ta có phương trình :35(y+2)=50(y-1)<=> y=8 thay y=8 vào (1) ta được : s=35(8+2)=350km  vậy quãng đường AB là 350km ; thời gian dự kiến là 8h

 

 

 

 

 

 

9 tháng 4 2021

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y}k;\frac{y}{z}k;\frac{z}{x}k\right)\) \(k\inℝ^+\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{x}{y}k\left(\frac{y}{z}k+1\right)}+\frac{1}{\frac{y}{z}k\left(\frac{z}{x}k+1\right)}+\frac{1}{\frac{z}{x}k\left(\frac{x}{y}k+1\right)}\ge\frac{3}{\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\left(1+\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\right)}\)

\(\Leftrightarrow\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\ge\frac{3}{k\left(1+k\right)}\) (D)

Ta có: \(\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\)

\(=\frac{\left(yz\right)^2}{xyzk\left(yk+z\right)}+\frac{\left(zx\right)^2}{xyzk\left(zk+x\right)}+\frac{\left(xy\right)^2}{xyzk\left(xk+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{xyzk\left(xk+yk+zk+x+y+z\right)}\) (Bất đẳng thức Bunyakovsky dạng phân thức)

\(\ge\frac{3\left(xyz^2+xy^2z+x^2yz\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3xyz\left(x+y+z\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3}{k\left(k+1\right)}\)

=> BĐT (D) đúng => đpcm

Dấu "=" xảy ra khi: \(a=b=c\)

10 tháng 4 2021

Tính chất :

- Là chất lỏng không màu , sôi ở 78,3oC

- Nhẹ hơn nước và tan vô hạn trong nước . Hòa tan được nhiều chất như iot và benzen

Cấu tạo phân tử :

 hay CH3 - CH2 - CH . Viết gọn : C2H5OH

23 tháng 4 2021

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

9 tháng 4 2021

Ta có: \(0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}\)

\(=\frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}=...=\frac{\sqrt{6+3}}{2020}=\frac{3}{2020}\)

Lại có: \(0< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}\)

\(=\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}=...=\frac{\sqrt[3]{6+2}}{2020}=\frac{2}{2020}\)

\(\Rightarrow0+0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}+\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{3}{2020}+\frac{2}{2020}< 1\)

\(\Rightarrow0< A< 1\Rightarrow\left[A\right]=0\)

Vậy \(\left[A\right]=0\)

10 tháng 4 2021

x =0 sẽ chắc chắn.

11 tháng 4 2021

x=0 chắc chắn cái gì cơ, chắc chắn sai à?

9 tháng 4 2021

giúp mình vơi mn ơiơi