Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích đa thức thành nhân tử:a) 4x3y+1/2yz3
= 2x^(3y+1)/(yz)
b) x9+x8-x-1
= (x-1)(x+1)^2(x^2+1)(x^4+1)
nha bạn
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
(–a – b)2 = [(– 1).(a + b)]2
= (–1)2(a + b)2
= 1.(a + b)2
= (a + b)2 (đpcm)
A = -x2 + 2x + 4 = -x2 + 2x - 1 + 5
= -(x - 1)2 + 5 \(\le5\)
Dấu "=" xảy ra <=> x - 1 = 0
<=> x = 1
Vậy Max B = 5 <=> x = 1
b) B = -x2 + 4x = -x2 + 4x - 4 + 4
= -(x - 2)2 + 4 \(\le\)4
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Max B = 4 <=> x = 2
a) 5x2(x – 1) + 10xy(x – 1) – 5y2(1-x)
b) x5 –x4y – xy4 + y5.
c) 25x2 – y2 + 4y – 4
d) 4x2 – 4x – 15
e) x3 – 4x2 + 3
f) 20x2 + 7x – 6.
a, \(A=x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN của A bằng 11/4 tại x = 3/2
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)Dấu ''='' xảy ra khi x = 0
Vậy GTNN của B bằng 5 tại x = 0
a, \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)
Vậy ta có đpcm
b, \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{4}-\frac{1}{4}\right)+1\)
\(=2\left(x+\frac{1}{2}\right)^2-\frac{1}{2}+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)
Vậy ta có đpcm
Trả lời:
Bài 1:
a, \(-6x^2-9xy+12x=-3x\left(2x+3y-4\right)\)
b, \(2x\left(x-3\right)+y\left(x-3\right)+3-x\)
\(=2x\left(x-3\right)+y\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(2x+y+1\right)\)
c, \(10xy\left(x-2y\right)-6y\left(2y-x\right)\)
\(=10xy\left(x-2y\right)+6y\left(x-2y\right)\)
\(=2y\left(x-2y\right)\left(5x+3\right)\)
d, \(3x\left(a-b\right)+6\left(a-b\right)=3\left(a-b\right)\left(x+2\right)\)
e, \(12x^2+15xyz-20x^2y^2=x\left(12x+15yz+20xy^2\right)\)
Bài 2:
a, \(2x^3+4x^2=0\)
\(\Leftrightarrow2x^2\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy x = 0; x = - 2 là nghiệm của pt.
b, \(\left(x+1\right)^2=3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-3x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\1-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
Vậy x = - 1; x = 1/2 là nghiệm của pt.
c, \(\left(3x-5\right)^2=8\left(5-3x\right)^2\)
\(\Leftrightarrow\left(3x-5\right)^2-8\left(5-3x\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2-8\left(3x-5\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2\left(1-8\right)=0\)
\(\Leftrightarrow7\left(3x-5\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2=0\)
\(\Leftrightarrow3x-5=0\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy x = 5/3 là nghiệ của pt.
d, \(\left(x-3\right)^2=2x-6\)
\(\Leftrightarrow\left(x-3\right)^2-\left(2x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Vậy x = 3; x = 5 là nghiệm của pt.
bài 1
\(a.-6x^2-9xy+12x=-3x\left(2x+3y-4\right)\)
\(b.2x\left(x-3\right)+y\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(2x+y-1\right)\)
\(c.10xy\left(x-2y\right)+6y\left(x-2y\right)=2y\left(x-2y\right)\left(5x+3\right)\)
\(d.3x\left(a-b\right)+6\left(a-b\right)=3\left(a-b\right)\left(x+2\right)\)
\(e.12x^2+15xyz-20x^2y^2=x\left(12x+15yz-20xy^2\right)\)
Bài 2.
a.\(2x^3+4x^2=2x^2\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left(x+1\right)^2=3x\left(x+1\right)\Leftrightarrow\left(x+1\right)\left(x+1-3x\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)
c.\(\left(3x-5\right)^3=8\left(5-3x\right)^2\Leftrightarrow\left(3x-5\right)^2\left(3x-5-8\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x-5-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{13}{3}\end{cases}}\)
d. \(\left(x-3\right)^2=2\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x-3-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)