Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức: \(\dfrac{n\left(n-1\right)}{2}\)
Thay vào bài, ta được:
\(\dfrac{n\left(n-1\right)}{2}=91\\ n\left(n-1\right)=91.2\\ n\left(n-1\right)=182\\ 14\left(14-1\right)=182\)
Vậy \(n=14\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{20^2}< \dfrac{1}{19\cdot20}=\dfrac{1}{19}-\dfrac{1}{20}\)
Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
=>\(A< 1-\dfrac{1}{20}\)
=>A<1
=>0<A<1
=>A không là số tự nhiên
số cách chọn là
12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1
D là trung điểm của AB
=>\(AD=\dfrac{AB}{2}\)
=>\(S_{ADC}=S_{ABC}\times\dfrac{1}{2}=60\left(cm^2\right)\)
Vì AI=1/3AC
nên \(S_{AID}=\dfrac{1}{3}\times S_{ADC}=\dfrac{1}{3}\times60=20\left(cm^2\right)\)
a) 1 giờ 48 phút = 1,8 giờ
Tổng vận tốc hai xe:
36 + 54 = 90 (km/giờ)
Quãng đường AB dài:
90 × 1,8 = 162 (km)
b) Thời gian để ô tô đi hết quãng đường AB:
162 : 54 = 3 (giờ)
Quãng đường người đi xe máy đi trong 3 giờ:
36 × 3 = 108 (km)
Người đi xe máy cách A một khoảng là:
162 - 108 = 54 (km)
=>a<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{99.100}\)
=>a<1-\(\dfrac{1}{100}\)<\(\dfrac{3}{4}\)
=>a<\(\dfrac{3}{4}\)
\(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\)
Ta có: \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}-\dfrac{1}{100}\\ \dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{49}{100}< \dfrac{50}{100}=\dfrac{1}{2}\)
Hay \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}< \dfrac{1}{2}\)
Vì \(\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
Vậy biểu thức \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}\)
1/3² + 1/4² + 1/5² + 1/6² + ... + 1/100²
< 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) + ... + 1/(99.100)
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/99 - 1/100
= 1/2 - 1/100 < 1/2
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{90}\\ =\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{90}\\ =\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}\right)+\dfrac{1}{90}\\ =\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\left(1-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\left(\dfrac{5}{5}-\dfrac{1}{5}\right)+\dfrac{1}{90}\\ =\dfrac{4}{5}+\dfrac{1}{90}\\ =\dfrac{72}{90}+\dfrac{1}{90}=\dfrac{73}{90}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/90
= 1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/90
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/90
= 1 - 1/5 + 1/90
= 4/5 - 1/90
= 71/90
Thể tích của bể khi vòi chảy được 50% thể tích là:
2,5x2,3x2,2x50%=6,325(m3)=6325(lít)
Thời gian để vòi chảy được nửa bể là:
6325:20=316,25(phút)
Chiều dài ban đầu của miếng bìa hình chữ nhật là:
9+6=15(m)
Vì chiều rộng của miếng bìa HCN dc giữ nguyên nên nó sẽ bằng độ dài 1 cạnh của miếng bìa hình vuông. Diện tích miếng bìa hình chữ nhật là:
15×9=135(m²)