P la STN. chứng minh p(p+1)(p+2)+2022 là hợp số. Giúp mình với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{30}< 2^{300}< 3^{200}\)
\(\Rightarrow2^{30}< 3^{200}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}=9^{30}\cdot9^{70}\)
Vì \(9>2\) nên \(9^{30}>2^{30}\) hay \(9^{30}\cdot9^{70}>2^{30}\)
Từ đó \(9^{100}>2^{30}\) hay \(2^{30}< 3^{200}\)
a) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=64\\a+b=256\left(1\right)\end{matrix}\right.\) \(\left(a;b\inℕ^∗\right)\)
Nên ta đặt \(\left\{{}\begin{matrix}a=64x\\b=64y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)
\(\left(1\right)\Rightarrow64x+64y=256\)
\(\Rightarrow64\left(x+y\right)=256\)
\(\Rightarrow x+y=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1.64=64\\b=3.64=192\end{matrix}\right.\) \(\left(thỏa.vì.a+b=256\right)\)
Vậy \(\left(a;b\right)=\left(64;192\right)\)
b) \(\left\{{}\begin{matrix}UCLN\left(a;b\right)=48\\a+b=13824\left(1\right)\end{matrix}\right.\) \(\left(a;b\inℕ^∗\right)\)
Nên ta đặt \(\left\{{}\begin{matrix}a=48x\\b=48y\end{matrix}\right.\) \(\left(x;y\inℕ^∗\right)\)
\(\left(1\right)\Rightarrow48x+48y=13824\)
\(\Rightarrow48\left(x+y\right)=13824\)
\(\Rightarrow x+y=288\)
\(\Rightarrow\left\{{}\begin{matrix}x=200\\y=88\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=48.200=9600\\b=48.88=4224\end{matrix}\right.\) \(\left(thỏa.vì.a+b=13824\right)\)
Vậy \(\left(a;b\right)=\left(9600;4224\right)\)
b,Theo bài ra ta có:
a + b =13824
ƯCLN (a,b)=48
*Vì ƯCLN (a,b) =48 => a=48x (x < y, ƯCLN (x,y ) = 1)
b=48y
*Mà a + b = 13824
=> 48x + 48y = 13824
48(x + y) = 13824 : 48
x + y = 288
*Ta phải tìm hai số x,y thỏa mãn các điều kiện :
x < y
UCLN (x,y) = 1
x + y =4
=>Với x=1 thì y=3
Lập bảng:
x=1
y=3
a=288 . 1 = 288 thuộc N
b=288 . 3 = 864 thuộc N
Vậy a=288,b=864.
a,Theo bài ra ta có:
a + b =256
ƯCLN (a,b)=64
*Vì ƯCLN (a,b) =64 => a=64x (x < y, ƯCLN (x,y ) = 1)
b=64y
*Mà a + b = 256
=> 64x + 64y = 256
64(x + y) = 256 : 64
x + y = 4
*Ta phải tìm hai số x,y thỏa mãn các điều kiện :
x < y
UCLN (x,y) = 1
x + y =4
=>Với x=1 thì y=3
Lập bảng:
x=1
y=3
a=18 . 1 = 18 thuộc N
b=18 . 3 = 54 thuộc N
Vậy a=18,b=54.
Theo bài ra ta có: Hai lần số bị trừ là: 1062
Số bị trừ là: 1062: 2 = 531
Số trừ thì còn phải biết hiệu hoặc tống của số trừ và số bị trừ em nhá
Gọi số bị trừ và số trừ lần lượt là a,b;
Khi đó:
\(a+b+\left(a-b\right)=1062\)
\(\Rightarrow2a=1062\) hay \(a=531\)
Để tìm b, ta có:
\(531+b+\left(531-b\right)=1062\)
\(\Rightarrow1062+0=1062\)
Vậy \(b=0\)
\(\Rightarrow2x-5=x\)
\(\Rightarrow x+x-5=x\)
\(\Rightarrow x=x+5-x\) (chuyển vế)
\(\Rightarrow x=5\)
Lời giải:
$(2x-5)^8=x^8$
$\Rightarrow 2x-5=x$ hoặc $2x-5=-x$
$\Rightarrow x=5$ hoặc $x=\frac{5}{3}$
2.[( 7 - 33: 32):22 + 99] - 100
= 2.[(7 - 3) : 4 + 99] - 100
= 2. [1 + 99] - 100
= 200 - 100
= 100
= 0
5[(85 - 35 : 7) : 8 + 90] - 50
= 5[(85 - 5) : 8 + 90] - 50
= 5.[ 80 : 8 + 90] - 50
= 5.[ 10 + 90 ] - 50
= 5. 100 - 50
= 500 - 50
= 450
5[(85 - 35 : 7) : 8 + 90] - 50
= 5[(85 - 5) : 8 + 90] - 50
= 5.[ 80 : 8 + 90] - 50
= 5.[ 10 + 90 ] - 50
= 5. 100 - 50
= 500 - 50
= 450
Bài này cô làm cho em rồi mà sao em hỏi nhiều vậy
Lời giải:
Vì $p(p+1)(p+2)$ là tích 3 số tự nhiên liên tiếp nên $p(p+1)(p+2)\vdots 3$
Mà $2022\vdots 3$
$\Rightarrow p(p+1)(p+2)+2022\vdots 3$
Mà hiển nhiên $p(p+1)(p+2)+2022>3$ nên nó là hợp số.
Ta có:
p(p+1)(p+2) + 2022 là hợp số
- Để p(p+1)(p+2) + 2022 là hợp số thì p(p+1)(p+2) và 2022 đều phải là hợp số .
Ta thấy:
p(p+1)(p+2) là một số tự nhiên.
=> p(p+1)(p+2) chia hết cho các thừa số của nó là:
p ; (p+1) ; (p+2)
=> p ; (p+1) ; (p+2) thuộc ước của p(p+1)(p+2)
- Nếu p(p+1)(p+2) là số nguyên tố thì p(p+1)(p+2) chỉ có 2 ước là 1 và chính nó.
=> p(p+1)(p+2) là hợp số.
Ta thấy:
p(p+1)(p+2) là hợp số và 2022 cũng là hợp số.
=> p(p+1)(p+2) + 2022 là hợp số.
vậy p(p+1)(p+2) +2022 là hợp số.