Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm AD, BC. Đường thẳng EF cắt AC, BD lần lượt tại M và N. Chứng minh rằng AC = BD khi và chỉ khi góc AME = góc BNF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko có kết quả bằng bao nhiêu thì sao tìm x đc
\(\frac{3\left(x-2\right)}{4}\div\frac{2-x}{2}=\frac{3\left(x-2\right)}{4}\times\frac{-2}{x-2}=\frac{-3}{2}\)
học tốt
Rút gọn nhé !
\(\frac{3}{4}.\left(x-2\right):\frac{1}{2}.\left(2-x\right)=\frac{3x-6}{4}.2.\left(2-x\right)\)
\(=\frac{3x-6}{4}.\left(4-2x\right)=\frac{\left(3x-6\right).\left(4-2x\right)}{4}\)
\(=\frac{\left(12x-24\right)-\left(6x^2+12x\right)}{4}=\frac{-24-6x^2}{4}\)
\(=\frac{-12-3x^2}{2}=\frac{-3.\left(4+x^2\right)}{2}\)
Phân tích đa thức thành nhân tử:
4x4-32x2+1
=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2.(2x2+6x+1)-6x.(2x2+6x+1)+(2x2+6x+1)
=(2x2+6x+1)(2x2- 6x+1)
64x4+164x4+1
=64x4+16x2+1−16x2=64x4+16x2+1−16x2
=(8x2−4x+1)(8x2+4x+1)
ta có :\(\widehat{DIC}=180^0-\widehat{CDI}-\widehat{DCI}=180^0-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=115^o\)
Vậy \(\left(\widehat{ADC}+\widehat{BCD}\right)=150^o\Rightarrow\widehat{A}+\widehat{B}=360^0-\left(\widehat{ADC}+\widehat{BCD}\right)=210^0\)
ta có :\(\widehat{A}=\frac{50^0+210^0}{2}=130^0\)
\(\widehat{B}=\frac{210^0-50^0}{2}=80^0\)
bạn xem đi nhé , có thể dùng hình ảnh có thể khó hiểu nên bạn xem vẫn chưa hiểu thì có thể vào kênh THẰNG THẦY LỢI để hỏi và được dựng video riêng nhé cám ơn
áp dụng bđt cosi ta có :
\(a^2+\frac{9}{4}\ge3a\);\(b^2+\frac{9}{4}\ge3b\)
cộng theo vế ta được :
\(a^2+b^2\ge3\left(a+b\right)-\frac{9}{2}=9-\frac{9}{2}=\frac{9}{2}\)
dấu "=" xảy ra <=> a = b = 3/2
\(B3,a\)
\(\frac{17xy^3z^4}{34x^3y^2z}=\frac{yz^3}{2x^2}\)
\(B3,b\)
\(\frac{y^2-xy}{4xy-4y^2}=\frac{y\left(y-x\right)}{4y\left(x-y\right)}=\frac{-1}{4}\)
67676767676767676767676 677767776767676767767667767676767676767676767676767676767677+2131453554675775807958874635256262772625=98726524241578399281614436737