Cho pt : x^2+(m+2)x+m-1=0. chứng minh rằng pt đã cho luôn có hai nghiệm phân biệt x1;x2 với mọi m. Khi đó, tìm m để biểu thức A=x1^2+x2^2-3x1x2 đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 15 9
Xét tam giác ABC vuông tại A, đường cao AH
*Áp dụng hệ thức :
\(AC^2=HC.BC\Rightarrow BC=\frac{AC^2}{HC}=\frac{225}{9}=25\)cm
\(\Rightarrow BH=BC-HC=25-9=16\)cm
*Áp dụng hệ thức :
\(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm
*Áp dugj hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{400}+\frac{1}{225}\)
\(\Rightarrow AH^2=400+225=625\Rightarrow AH=25\)cm
Ta có: \(\frac{1}{a+b}=\frac{1}{4}.\left(\frac{4}{a+b}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(CMTT:\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right);\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow A\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy Max A= \(\frac{3}{2}\)\(\Leftrightarrow a=b=c=1\)
gọi x là vận tốc xe thứ nhất
thì vận tốc xe thứ 2 là x+10
ta có thời gian xe thứ nhất chạy 1/2 quãng đường nhiều hơn xe thứ 2 là 30 phút nên
\(\frac{150}{x}-\frac{150}{x+10}=0.5\Leftrightarrow x^2+10x=3000\Leftrightarrow\orbr{\begin{cases}x=50\\x=-60\end{cases}}\)
vậy vận tốc xe thứ nhất là 50km/h, xe thứ 2 là 60km/h
đk: \(5\ge x\ge-5\)
Ta có: \(x^2=\sqrt{5-x}+\sqrt{5+x}+12\)
\(\Leftrightarrow\left(x^2-16\right)-\left(\sqrt{5-x}-3\right)-\left(\sqrt{5+x}-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)-\frac{5-x-9}{\sqrt{5-x}+3}-\frac{5+x-1}{\sqrt{5+x}+1}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)+\frac{x+4}{\sqrt{5-x}+3}-\frac{x+4}{\sqrt{5+x}+1}=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-4+\frac{1}{\sqrt{5-x}+3}-\frac{1}{\sqrt{5+x}+1}\right)=0\)
Nếu x + 4 = 0 => x = -4 (tm)
Nếu \(x-4+\frac{1}{\sqrt{5-x}+3}-\frac{1}{\sqrt{5+x}+1}=0\)
TH1: \(x=4\left(tm\right)\)
TH2: \(x>4\)
Khi đó: \(\hept{\begin{cases}\sqrt{5-x}+3< 1+3=4\\\sqrt{5+x}+1>3+1=4\end{cases}}\Rightarrow\frac{1}{\sqrt{5-x}+3}>\frac{1}{4}>\frac{1}{\sqrt{5+x}+1}\)
\(\Rightarrow x-4+\frac{1}{\sqrt{5-x}+3}-\frac{1}{\sqrt{5+x}+1}>0\)
TH3: \(x< 4\)
Khi đó: \(\hept{\begin{cases}\sqrt{5-x}+3>4\\\sqrt{5+x}+1< 4\end{cases}}\Rightarrow\frac{1}{\sqrt{5-x}+3}< \frac{1}{4}< \frac{1}{\sqrt{5+x}+1}\)
\(\Rightarrow x-4+\frac{1}{\sqrt{5-x}+3}-\frac{1}{\sqrt{5+x}+1}< 0\)
Vậy tập nghiệm của PT \(S=\left\{-4;4\right\}\)
Thay x = 1 ; y = 2 vào hàm số trên ta được :
\(a=2\):<
=> Chọn A
đk là a khác 0 nhé
thay tọa độ của M vào pt parabol đc đ/a là A
\(\frac{1}{2\left(x-1\right)}+\frac{3}{x^2-1}=\frac{1}{4}\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow\frac{2\left(x+1\right)+12}{4\left(x-1\right)\left(x+1\right)}=\frac{x^2-1}{4\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow2x+14=x^2-1\Leftrightarrow x^2-2x-15=0\)
\(\Delta=4-4\left(-15\right)=4+60=64\)
\(x_1=\frac{2-8}{2}=-3;x_2=\frac{2+8}{2}=5\)(tm)
Vậy tập nghiệm của pt là S = { -3 ; 5 }
Cậu kiểm tra lại xem có đúng không giúp mình nhé:
\(\sqrt{3}-x=x^2-\left(\sqrt{3}+x\right)\)
\(\Leftrightarrow\sqrt{3}-x+\sqrt{3}+x=x^2\)
\(\Leftrightarrow2\sqrt{3}=x^2\)
\(\Leftrightarrow x^4=\left(2\sqrt{3}\right)^2\)
\(\Leftrightarrow x^{4^{ }}=12\)
\(\Leftrightarrow x=\sqrt[4]{12}\)
Ta có:
\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt với mọi GT của m
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)
Thay vào A ta được:
\(A=x_1^2+x_2^2-3x_1x_2\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2\)
\(A=\left(-m-2\right)^2-5\left(m-1\right)\)
\(A=m^2+4m+4-5m+5=m^2-m+9\)
\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)
\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)
Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)
Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)
Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)
Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2
= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5
= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m
Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4