K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}4x+3y=6\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\15x-3y=33\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+3y+15x-3y=6+33\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19x=39\\y=5x-11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{39}{19}\\y=5\cdot\dfrac{39}{19}-11=-\dfrac{14}{19}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{1}{5}x-\dfrac{1}{6}y=0\\5x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{6}\\5x-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\5\cdot\dfrac{5}{6}y-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{25}{6}y-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{1}{6}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=\dfrac{5}{6}\cdot12=10\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{8}y=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}-\dfrac{y}{8}=3\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{8x-3y}{24}=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x-3y=72\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}24x-9y=216\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y+7x+9y=216-2\\8x-3y=72\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}31x=214\\3y=8x-72\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{214}{31}\\y=\dfrac{8x-72}{3}=\dfrac{-520}{93}\end{matrix}\right.\)

9 tháng 7 2024

mọi người giúp e với ạ

a: \(\left\{{}\begin{matrix}4x+3y=6\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\15x-3y=33\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+3y+15x-3y=6+33\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19x=39\\y=5x-11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{39}{19}\\y=5\cdot\dfrac{39}{19}-11=-\dfrac{14}{19}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{1}{5}x-\dfrac{1}{6}y=0\\5x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{6}\\5x-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\5\cdot\dfrac{5}{6}y-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{25}{6}y-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{1}{6}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=\dfrac{5}{6}\cdot12=10\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{8}y=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}-\dfrac{y}{8}=3\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{8x-3y}{24}=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x-3y=72\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}24x-9y=216\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y+7x+9y=216-2\\8x-3y=72\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}31x=214\\3y=8x-72\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{214}{31}\\y=\dfrac{8x-72}{3}=\dfrac{-520}{93}\end{matrix}\right.\)

Khi x=5 thì \(11x-52=11\cdot5-52=55-52=3>0\)

=>Đúng

Khi x=5 thì \(6x-29=6\cdot5-29=30-29=1>0\)

=>6x-29>0 đúng

Khi x=5 thì 5-2=3<=0(sai)

=>x-2<=0 là đáp án sai duy nhất, hai cái còn lại đúng

a: \(\left\{{}\begin{matrix}4x+3y=6\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\15x-3y=33\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x+3y+15x-3y=6+33\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19x=39\\y=5x-11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{39}{19}\\y=5\cdot\dfrac{39}{19}-11=-\dfrac{14}{19}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{1}{5}x-\dfrac{1}{6}y=0\\5x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{6}\\5x-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\5\cdot\dfrac{5}{6}y-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{25}{6}y-4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}y\\\dfrac{1}{6}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=\dfrac{5}{6}\cdot12=10\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{8}y=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}-\dfrac{y}{8}=3\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{8x-3y}{24}=3\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x-3y=72\\7x+9y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}24x-9y=216\\7x+9y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y+7x+9y=216-2\\8x-3y=72\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}31x=214\\3y=8x-72\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{214}{31}\\y=\dfrac{8x-72}{3}=\dfrac{-520}{93}\end{matrix}\right.\)

9 tháng 7 2024

3) Với a = 3 ta có hpt:

\(\left\{{}\begin{matrix}2x+3y=5\\3x+2y=2\cdot3+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+9y=15\\6x+4y=14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=1\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{5}\\2x+\dfrac{3}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{5}\\2x=5-\dfrac{3}{5}=\dfrac{22}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=\dfrac{11}{5}\end{matrix}\right.\)

2: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne2\\y\ne1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}-\dfrac{2}{x-2}+\dfrac{3}{y-1}=2-1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}=1-\dfrac{1}{y-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y-1=5\\x-2=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=2+\dfrac{5}{4}=\dfrac{8}{4}+\dfrac{5}{4}=\dfrac{13}{4}\end{matrix}\right.\left(nhận\right)\)

1 tháng 10 2024

Là sai chứ sao

a: Để hệ có nghiệm duy nhất thì \(\dfrac{3}{2}\ne\dfrac{a}{1}\)

=>\(a\ne1,5\)

b: Để hệ vô nghiệm thì \(\dfrac{3}{2}=\dfrac{a}{1}\ne\dfrac{5}{b}\)

=>\(\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne\dfrac{10}{3}\end{matrix}\right.\)

c: Để hệ có vô số nghiệm thì \(\dfrac{3}{2}=\dfrac{a}{1}=\dfrac{5}{b}\)

=>\(\left\{{}\begin{matrix}a=1\cdot\dfrac{3}{2}=\dfrac{3}{2}\\b=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\end{matrix}\right.\)

ĐKXĐ: \(x\ne\pm y\)

Phương trình ở dưới thiếu vế phải rồi bạn

ở cà chua tính trạng quả đỏ trội hoàn toàn so với tính trạng quả vàng và quả tròn trội hoàn toàn so với quả dài a hãy xác định kết quả phân li kiểu gen và kiểu hình ở F1 khi cho cây cà chua quả vàng,tròn lai với cà chua vàng,dài cho 1 cây quả đỏ(I) lai ở cây (ll) đời con xuất hiện 1/2 cây quả đỏ,tròn:1/2 quả đỏ,dài. xác định kiểu gen của bố mẹ ở l và ll biết mỗi gen quy định 1...
Đọc tiếp

ở cà chua tính trạng quả đỏ trội hoàn toàn so với tính trạng quả vàng và quả tròn trội hoàn toàn so với quả dài a hãy xác định kết quả phân li kiểu gen và kiểu hình ở F1 khi cho cây cà chua quả vàng,tròn lai với cà chua vàng,dài cho 1 cây quả đỏ(I) lai ở cây (ll) đời con xuất hiện 1/2 cây quả đỏ,tròn:1/2 quả đỏ,dài. xác định kiểu gen của bố mẹ ở l và ll biết mỗi gen quy định 1 tính trạng và di truyền phân li độc lậpở cà chua tính trạng quả đỏ trội hoàn toàn so với tính trạng quả vàng và quả tròn trội hoàn toàn so với quả dài a hãy xác định kết quả phân li kiểu gen và kiểu hình ở F1 khi cho cây cà chua quả vàng,tròn lai với cà chua vàng,dài cho 1 cây quả đỏ(I) lai ở cây (ll) đời con xuất hiện 1/2 cây quả đỏ,tròn:1/2 quả đỏ,dài. xác định kiểu gen của bố mẹ ở l và ll biết mỗi gen quy định 1 tính trạng và di truyền phân li độc lập

0