K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

Thôi có người giúp rồi nhé!

15 tháng 5 2021

\(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)

mà \(6-2\sqrt{5}=\left(\sqrt{5}\right)^2-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)

do \(\sqrt{5}-1>0\)nên đẳng thức tương đương 

\(=2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}=2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{\sqrt{5}+3}\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\sqrt{4\sqrt{5}+12}\)

mà \(4\sqrt{5}+12=2.2\sqrt{5}+12=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2\)

\(\Rightarrow2+\sqrt{5}>0\)tương đương \(=\left(2\sqrt{10}-2\sqrt{2}\right)\sqrt{\left(2+\sqrt{5}\right)^2+3}=\left(2\sqrt{10}-2\sqrt{2}\right)\left(5+\sqrt{5}\right)\)

\(=2\sqrt{10}\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=2\sqrt{10}.4=8\sqrt{10}\)

làm màu cực mạnh =)) 

15 tháng 5 2021

Bài mấy vậy bạn

15 tháng 5 2021

153086 nhé

15 tháng 5 2021

\(x=\sqrt{6+\sqrt{20}}\)

\(\rightarrow x=\sqrt{6+2\sqrt{5}}\)

\(\rightarrow x=\sqrt{5+2\sqrt{5}+1}\)

\(\rightarrow x=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1^2}\)

\(\rightarrow x=\left|\sqrt{5}+1\right|\)

\(\rightarrow x=\sqrt{5}+1\)

  gần =  3,23606797749979

15 tháng 5 2021

sau này

25 tháng 5 2021

\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)

\(\Leftrightarrow3\left(x^2+7x+7\right)+2\sqrt{x^2+7x+7}=5\)

Đặt \(\sqrt{x^2+7x+7}=t\left(t\ge0\right)\)phương trình trở thành :

\(3t^2+2t-5=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{3}\left(ktm\right)\end{cases}}\)

Với \(t=1\Leftrightarrow x^2+7x+6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}\left(tm\right)}\)

15 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

Dấu "=" xảy ra khi : a=b

Chứng minh tương tự như trên ; ta có :

\(\hept{\begin{cases}\frac{1}{b+c}\text{≤}\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\left(2\right)\\\frac{1}{c+a}\text{≤}\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\left(3\right)\end{cases}}\)

Cộng vế với vế của (1) ; (2) ; (3) ; ta được :

\(A\text{≤}\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\text{=}\frac{3}{2}\)

Dấu "=" xảy ra khi ;

\(\hept{\begin{cases}a=b=c\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy Max (A) = 3/2 khi a=b=c=1

15 tháng 5 2021

quản lí tên kiểu j z

4 tháng 6 2021

Vì BE vuông góc với AC tại E (E ϵAC) ⇒ góc BEC =\(90^0\)

Vì CF vuông góc với AB tại F (F ϵ AB) ⇒ góc BFC =\(90^0\)         

xét tứ giác BCEF có ;

góc BEC+BFC=\(90^0+90^0=180^0\)

mà hai góc ở vị trí kề nhau

⇒tứ giác BCEF là tgnt hay A,C,E,F cùng nằm trên một đtròn

b,

15 tháng 5 2021

              Bài làm :

a) Thay m=-5 vào PT ; ta được :

\(x^2-2x-8=0\)

\(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

=> PT có 2 nghiệm phân biệt :

\(\hept{\begin{cases}x_1=\frac{1+\sqrt{9}}{1}=4\\x_2=\frac{1-\sqrt{9}}{1}=-2\end{cases}}\)

b) Đk để PT có 2 nghiệm phân biệt :

\(\Delta'>0\Leftrightarrow\left(-1\right)^2-1.\left(m-3\right)=1-m+3=4-m>0\)

\(\Rightarrow m< 4\)

Khi đó ; theo hệ thức Vi-ét ; ta có :

\(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1x_2=m-3\end{cases}}\)

Mà : 

\(x_1=3x_2\Rightarrow x_1-3x_2=0\left(2\right)\)

Từ (1) và (2) ; ta có HPT :

\(\hept{\begin{cases}x_1+x_2=2\\x_1-3x_2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1=\frac{3}{2}\\x_2=\frac{1}{2}\end{cases}}\)

\(\Rightarrow x_1x_2=\frac{3}{4}\Rightarrow m=\frac{3}{4}+3=\frac{15}{4}\left(TMĐK\right)\)

Vậy m=15/4 thì ...

4 tháng 6 2021

a,x\(^2\)-2x+m-3=0 (*)

thay m=-5 vào pt (*) ta đk:

x\(^2\)-2x+(-5)-3=0⇔x\(^2\)-2x-8=0

                       Δ=(-2)\(^2\)-4.1.(-8)=36>0

      ⇒pt có hai nghiệm pb

         \(x_1=\dfrac{2+\sqrt{36}}{2}=4\) , \(x_2=\dfrac{2-\sqrt{36}}{2}=-2\)

vậy pt đã cho có tập nghiệm S=\(\left\{4;-2\right\}\)

b,\(x^2-2x+m-3=0\) (*)

Δ=(-2)\(^2\)-4.1.(m-3)=4-4m+12=16-4m

⇒pt luôn có hai nghiệm pb⇔Δ>0⇔16-4m>0⇔16>4m⇔m<4

với m<4 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét  ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=m-3\end{matrix}\right.\)       (1) ,(2)

\(x_1,x_2\) TM \(x_1=3x_2\) (3)

từ (1) và (3) ta đk:

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{1}{2}\\x_1=\dfrac{3}{2}\end{matrix}\right.\)

thay \(x_1=\dfrac{3}{2},x_2=\dfrac{1}{2}\) vào (2) ta đk:

\(\dfrac{3}{2}.\dfrac{1}{2}=m-3\Leftrightarrow3=4m-12\Leftrightarrow4m=15\Leftrightarrow m=\dfrac{15}{4}\) (TM)

vậy m=\(\dfrac{15}{4}\) thì pt (*) có hai nghiệm pb \(x_1,x_2\) TMĐK \(x_1=3x_2\)