Cho x>0, Tìm giá trị nhỏ nhất của biểu thức \(M=9x^2-5x+\frac{1}{9x}+2020\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge2\).
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow\sqrt{x-2}-3\sqrt{x-2}\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}=0\)(vì \(x\ge2\)thì \(1-3\sqrt{x+2}< 0\))
\(\Leftrightarrow x=2\)
\(\hept{\begin{cases}x^2+y^2=5\\x^2+xy+1=2x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=5\left(-x^2-xy+2x+y\right)\\1=-x^2-xy+2x+y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x^2+y^2+5xy-10x-5y=0\\1=-x^2-xy+2x+y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(3x+y-5\right)\left(2x+y\right)=0\\1=-x^2-xy+2x+y\end{cases}}\)
Với \(3x+y-5=0\Leftrightarrow y=5-3x\)ta có:
\(x^2+\left(5-3x\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=2\\x=2\Rightarrow y=-1\end{cases}}\)
Với \(2x+y=0\Leftrightarrow y=-2x\)ta có:
\(x^2+\left(-2x\right)^2=5\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=-2\\x=-1\Rightarrow y=2\end{cases}}\)
Cách 2:phân tích cái pt 2 ra nhân tử
\(x^2+xy+1=2x+y\)
\(\Leftrightarrow\left(x-1\right)^2+y\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1+y\right)=0\)
...
a) \(BEFI\)nội tiếp vì \(\widehat{BEF}=\widehat{BIF}=90^o\).
b) \(\widehat{ADC}\)là góc nội tiếp chắn cung \(\widebat{AC}\).
\(\widehat{CBE}\)là góc nội tiếp chắn cung \(\widebat{CE}\).
\(\widebat{AC}=\widebat{CE}\)suy ra \(\widehat{ADC}=\widehat{CBE}\).
\(\sqrt{x^2-4x+5}=x-1\)
ĐK : x ≥ 1
=> x2 - 4x + 5 = x2 - 2x + 1
<=> -2x = -4 <=> x = 2 (tm)
Vậy phương trình có nghiệm x = 2
\(\sqrt{x^2-4x+5}=x-1\)(ĐK: \(x\inℝ\))
\(\Leftrightarrow\hept{\begin{cases}x^2-4x+5=\left(x-1\right)^2\\x-1\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x=-4\\x\ge1\end{cases}}\)
\(\Leftrightarrow x=2\).
Ta có: \(P=\sqrt{a^2+a}+\sqrt{b^2+b}+\sqrt{c^2+c}\)
\(=\sqrt{a\left(a+1\right)}+\sqrt{b\left(b+1\right)}+\sqrt{c\left(c+1\right)}\)
\(=\frac{1}{2}\left[\sqrt{4a\left(a+1\right)}+\sqrt{4b\left(b+1\right)}+\sqrt{4c\left(c+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{4a+a+1}{4}+\frac{4b+b+1}{4}+\frac{4c+c+1}{4}\right)\)
\(=\frac{1}{2}\cdot\frac{5\left(a+b+c\right)+3}{4}=\frac{1}{2}\cdot4=2\)
Dấu "=" xảy ra khi: a = b = c = 1/3
Lại có: \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a\ge a^2\\b\ge b^2\\c\ge c^2\end{cases}}\)
\(\Rightarrow P\ge\sqrt{a^2+a^2}+\sqrt{b^2+b^2}+\sqrt{c^2+c^2}=\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=1\\b=c=0\end{cases}}\) và các hoán vị
1, vì ME vuông góc vs AB tại E ⇒AEM=90\(^0\)(1))
vì MF vuông góc vs AC tại F ⇒AFM=90\(^0\)(2)
lại có:A là điểm chính giữa cảu cug BC ⇒góc AOM =90\(^0\)(3)
từ (1),(2),(3)⇒góc AME=góc AFM=góc AOM(=90\(^0\)) cùng nhìn cạnh AM
⇒năm điểm A,E,F,O,M cùng nằm trên một đường tròn
1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)
Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)
Vậy ...
1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\) ĐKXĐ:x≥o,y≠1
⇔\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)
vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)
2,a, xét pthđgđ của (d) và (p) khi m=3:
x\(^2\)=3x-1⇔\(x^2-3x+1=0\)
Δ=(-3)\(^2\)-4.1.1=5>0
⇒pt có 2 nghiệm pb
\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)
thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))
thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
b,xét pthđgđ của (d) và (p) :
\(x^2=mx-1\)⇔\(x^2-mx+1=0\) (*)
Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4
⇒pt có hai nghiệm pb⇔Δ>0
⇔m\(^2\)-4>0⇔m>16
với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)
theo hệ thức Vi-ét ta có:
(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)
\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3
⇒\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)
thay (I) vào (**) ta được:
1.m=3⇔m=3 (TM m≠0)
vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3
1) Gọi x(km/h) là vận tốc của xe 1 ( x > 10 )
Vận tốc của xe 2 = x - 10 (km/h)
Thời gian xe 1 đi hết quãng đường AB = 160/x (km)
Thời gian xe 2 đi hết quãng đường AB = 160/(x-10) (km)
Khi đó xe 1 đến B sớm hơn xe 2 là 48 phút = 4/5 giờ nên ta có phương trình :
\(\frac{160}{x-10}-\frac{160}{x}=\frac{4}{5}\)
<=> \(\frac{160x}{x\left(x-10\right)}-\frac{160\left(x-10\right)}{x\left(x-10\right)}=\frac{4}{5}\)
=> 4x( x - 10 ) = 8000
<=> x2 - 10x - 2000 = 0 (*)
Xét (*) có Δ = b2 - 4ac = (-10)2 - 4.1.(-2000) = 100 + 8000 = 8100
Δ > 0 nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{10+\sqrt{8100}}{2}=50\left(tm\right)\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{10-\sqrt{8100}}{2}=-40\left(ktm\right)\end{cases}}\)
Vậy vận tốc của xe 2 là 40km/h
gọi vận tốc của xe thứ hai là x (km/h)
⇒t/g xe thứ hai đi là \(\dfrac{160}{x}\)(h)
vận tốc của xe thứ nhất là x+10 (km/h) (x>0)
⇒t/g của xe thứ nhất đi là \(\dfrac{160}{x+10}\left(h\right)\)
vì xe thứ nhất đến sớm hơn xe thứ hai là 48'=\(\dfrac{4}{5}h\) nên ta có pt:
\(\dfrac{160}{x}-\dfrac{160}{x+10}=\dfrac{4}{5}\)
⇔\(\dfrac{800x+8000-800x}{5x\left(x+10\right)}=\dfrac{4x^2+40x}{5x\left(x+10\right)}\)⇒4x\(^2\)+40x-8000=0
Δ=40\(^2\)-4.4.(-8000)=129600>0
⇒pt có hai nghiệm pb
x\(_{_{ }1}\)=\(\dfrac{-40+\sqrt{129600}}{8}\)=40 (TM)
x\(_2\)=\(\dfrac{-40-\sqrt{129600}}{8}\)=-50 (KTM)
vậy vận tốc của xe thứ hai là 40 km/h
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
Thay vào biểu thức A ta được : \(\frac{1}{2-1}=1\)
b, Với \(x\ge0;x\ne1\)
\(Q=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{x-1}-1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2-x+1}{x-1}\)
\(=\frac{x+\sqrt{x}-2-x+1}{x-1}=\frac{\sqrt{x}-1}{x-1}=\frac{1}{\sqrt{x}+1}\)
c, Ta có : \(\frac{1}{Q}+P\le4\)hay\(1:\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\le4\)ĐK : \(x\ne1\)
\(\Leftrightarrow\frac{x-1+1}{\sqrt{x}-1}-4\le0\Leftrightarrow\frac{x-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}\le0\Rightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)do \(\left(\sqrt{x}-2\right)^2\ge0\)
Kết hợp với đk, vậy \(x< 1\)
1, thay x=4 (TMĐKXĐ) vào P ta được:
P=\(\dfrac{1}{\sqrt{4}-1}\)=1
vậy khi x=4 thì P =1
2,với x≥0,x≠1:
Q=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{2}{\sqrt{x}-1}-1\)=\(\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}\)=\(\dfrac{-1}{\sqrt{x}-1}\)
vậy Q=\(\dfrac{-1}{\sqrt{x}-1}\)
3,\(\dfrac{1}{Q}+P\le4\)
⇒1/\(\dfrac{-1}{\sqrt{x}-1}\)+\(\dfrac{1}{\sqrt{x}-1}\)≤4⇔\(\dfrac{-\sqrt{x}-1}{1}+\dfrac{1}{\sqrt{x}-1}\le4\)⇔\(\dfrac{-x+1+1}{\sqrt{x}-1}-4\le0\)⇔\(\dfrac{-x+2-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)⇔\(\dfrac{-x-4\sqrt{x}+6}{\sqrt{x}-1}\le0\)⇔\(\dfrac{x+4\sqrt{x}-6}{\sqrt{x}-1}\le0\)⇔\(\dfrac{x+4\sqrt{x}+4-10}{\sqrt{x}-1}\le0\)
\(\dfrac{ \left(\sqrt{x}+2\right)^2-10}{\sqrt{x}-1}\le0\)⇒\(\sqrt{x}-1\le0\) (vì (\(\sqrt{x}+2\))\(^2\)≥0 ∀ x hay (\(\sqrt{x}+2\))\(^2\)-10>0 ∀ x)
⇔x≤1 (KTM)
vậy không có giá trị nào của x TM để \(\dfrac{1}{Q}+P\le4\)
vào tìm kiems có câu tương tự nhé
\(M=9x^2-6x+1+x+\frac{1}{9x}+2019\)
\(M=\left(3x-1\right)^2+x+\frac{1}{9x}+2019\ge\left(3x-1\right)^2+\frac{2}{3}+2019\left(AM-GM\right)\)
\(MinM=\frac{6059}{3}\)
Đẳng thức xảy ra khi x=1/3