giải nhanh bài 3,4,1 hộ mình với ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
\(8,75\times X+125\%\times X=20\)
=>\(8,75\times X+1,25\times X=20\)
=>\(X\times\left(8,75+1,25\right)=20\)
=>\(X\times10=20\)
=>X=20:10=2
ĐKXĐ: \(x\ge2\)
\(\sqrt{4x-8}-\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{4\left(x-2\right)}-\sqrt{x-2}=2\)
\(\Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=6\) (thỏa mãn)
Tim n nguyên để A = \(\dfrac{n-1}{n+2}\) thỏa mãn điều gì em ơi?
\(E\left(x\right)=2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\) là nghiệm của đa thức
\(E\left(x\right)=0\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
Vậy...
a: Xét ΔBAH và ΔBDH có
BA=BD
AH=DH
BH chung
Do đó: ΔBAH=ΔBDH
b: ΔBAH=ΔBDH
=>\(\widehat{ABH}=\widehat{DBH}\)
Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
=>EA=ED
=>ΔEAD cân tại E
c: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=30^0\)
Xét ΔEDC vuông tại D có \(sinECD=\dfrac{ED}{EC}\)
=>\(\dfrac{EA}{EC}=sin30=\dfrac{1}{2}\)
=>EC=2AE
\(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(\left(x-3\right)\)\(\left(2x-4\right)\)\(=\) \(0\)
\(\Rightarrow\) \(\left(x-3\right)\)\(=\) \(0\) hoặc \(\left(2x-4\right)\)\(=\) \(0\)
\(TH1:\) \(\left(x-3\right)\)\(=\) \(0\)
\(x\) \(=\) \(0\) \(+\) \(3\)
\(x\) \(=\) \(3\)
\(TH2:\) \(\left(2x+4\right)\)\(=\) \(0\)
\(2x\) \(=\) \(0\) \(-\) \(4\)
\(2x\) \(=\) \(-4\)
\(x\) \(=\) \(-4\) \(:\) \(2\)
\(x\) \(=\) \(-2\)
Vậy \(x\) \(\in\) { \(3\) \(;\) \(-2\) }
Với mọi a;b;c ta có
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge2\left(a+b+c\right)-3\) (1)
Lại có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow6a^2+6b^2+6c^2\ge6ab+6bc+6ca\) (2)
Cộng vế (1) và (2):
\(7\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+3ab+3bc+3ca\right)-3=2.12-3=21\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
3 mình giải cho bạn rồi
4 giải
a)s
b)đ
1 giai
có 9 góc nhọn,6 góc vuông,6 góc tù