\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
Giải pt trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)\left(x-1\right)\left(x-3\right)=15\left(2x-1\right)^2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-4x+3\right)=15\left(2x-1\right)^2\)(1)
Đặt \(\hept{\begin{cases}x^2+1=a\\2x-1=b\end{cases}}\)
\(\Rightarrow\left(1\right)\Leftrightarrow a\left(a-2b\right)=15b^2\)
\(\Leftrightarrow a^2-2ab=15b^2\)
\(\Leftrightarrow\left(a-b\right)^2=16b^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=4b\\a-b=-4b\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=5b\\a=-3b\end{cases}}\)
TH1: a=5b
\(\Rightarrow x^2+1=10x-5\)
\(\Leftrightarrow x^2-10x+6=0\)
\(\Delta=100-24=76\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{10+\sqrt{76}}{2}=5+\sqrt{19}\\x=5-\sqrt{19}\end{cases}}\)
TH2: a= -3b tương tự
\(\hept{\begin{cases}\left(x-1\right)y^2+x+y=3\\\left(y-1\right)x^2+y=x+1\end{cases}}\)
Giải hpt trên
Biểu thức thứ 2 trong HPT chưa chính xác \(\left(y-1\right)\)xem lại đề bài nha bạn !
a, Điều kiện : \(a\ge0,a\ne1\)
\(A=\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
\(=\left(\frac{a+1+\sqrt{a}}{a+1}\right):\left[\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right]\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left[\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right]\)
\(=\frac{a+\sqrt{a}+1}{a+1}.\frac{\left(\sqrt{a}-1\right)\left(a+1\right)}{a-2\sqrt{a}+1}\)
\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)^2}=\frac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)
\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)
b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)
Vì \(\sqrt{x}+6\ge6\)
\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)
Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)
Vậy GTLN L là 4 khi x = 0
\(M=\frac{\left(a+1\right)^2+2a}{a\left(a+1\right)}+\frac{\left(b+1\right)^2+2b}{b\left(b+1\right)}+\frac{\left(c+1\right)^2+2c}{c\left(c+1\right)}\)
\(M=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(M\ge3+\frac{9}{a+b+c}+2\left(\frac{9}{a+b+c+3}\right)\ge3+3+3=9\)
Dấu "=" xảy ra khi a=b=c=1
\(\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)2
<=>\(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=>\(\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=>\(\frac{x^2-4x+3}{x\left(\sqrt{x+\frac{3}{x}}+2\right)}-\frac{x^2-4x+3}{2\left(x+1\right)}=0\)
<=>
con lai ban tu giai nha