Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=x+\frac{a+b}{2}\), \(u=\frac{a-b}{2}\).
Ta có: \(x+a=t+u,x+b=t-u\).
Phương trình tương đương với:
\(\left(t+u\right)^4+\left(t-u\right)^4=c\)
\(\Leftrightarrow2t^4+12u^2t^2+2u^4-c=0\)
Đến đây ta giải phương trình trùng phương ẩn \(t\).
a.
$I$ là trung điểm của $CD$ nên $OI \perp CD$.
$\Rightarrow \widehat{SIO} = 90^{\circ}$.
Mà $\widehat{SAO} = \widehat{SBO} = 90^{\circ}$.
Suy ra 5 điểm $S,A,I,O,B$ cùng thuộc đường tròn đường kính $SO$.
Ta có $\widehat{SAC} = \widehat{ADC}$ (cùng chắn cung AC).
Xét $\Delta SAC$ và $\Delta SDA$ có
$\widehat{S}$ chung;
$\widehat{SAC} = \widehat{ADC}$
$\Rightarrow \Delta SAC \sim \Delta SDA$ (g.g).
$\Rightarrow \dfrac{SA}{SD} = \dfrac{SC}{SA} \Rightarrow SA^2 = SC.SD.$
b.
$\Delta SAO$ vuông tại $A$ có đường cao $AH$.
$\Rightarrow SA^2 = SH.SO$.
Từ câu a ta có $SH.SO = SC.SA = SA^2 \Rightarrow \dfrac{SH}{SD} = \dfrac{SC}{SO}$.
Xét $\Delta SCH$ và $\Delta SOD$ có
$\widehat{S}$ chung;
$\dfrac{SH}{SD} = \dfrac{SC}{SO}$
$\Rightarrow \Delta SCH \sim \Delta SOD$ (c.g.c).
$\Rightarrow \widehat{SCH} = \widehat{SOD}$ (hai góc tương ứng)
$\Rightarrow CHOD$ nội tiếp.
c.
Ta có $AD // SB$, $OB \perp SB \Rightarrow OB \perp AD.$
Mà đường kính thì đi qua trung điểm day cung nên $BO$ đi qua trung điểm của AD. (1)
Áp dụng định lí Talet với $AD // SB$, $E = AB \cap SD$ và $F = ME \cap AD$.
$\Rightarrow \dfrac{FD}{SM} = \dfrac{ED}{SE} = \dfrac{AD}{SB} \Rightarrow \dfrac{SM}{SB} = \dfrac{FD}{AD} \Rightarrow F$ là trung điểm của $AD$.
Mà theo (1) $BO$ đi qua trung điểm $F$ của $AD$ nên ba điểm $B,O,F$ thẳng hàng.
\(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)(vì \(a>b>0\))
\(\Leftrightarrow a+b-2\sqrt{ab}-a+b< 0\)
\(\Leftrightarrow b-\sqrt{ab}< 0\)
\(\Leftrightarrow\sqrt{b}\left(\sqrt{b}-\sqrt{a}\right)< 0\)
\(\Leftrightarrow\sqrt{b}-\sqrt{a}< 0\)
Bất đẳng thức cuối cùng đúng do \(a>b>0\)mà ta biến đổi tương đương nên bất đẳng thức cần chứng minh cũng đúng.
a) \(\widehat{AMO}=\widehat{AIO}=90^o\) nên \(M\)và \(I\)cùng nhìn \(AO\)dưới góc \(90^o\)nên \(AMOI\)nội tiếp.
b) \(OM=ON\)nên \(O\)thuộc đường trung trực của \(MN\)
\(AM=AN\)nên \(A\)thuộc đường trung trực của \(MN\)
nên \(AO\)là trung trực của \(MN\)nên \(AO\perp MN\).
Tam giác \(AMO\)vuông tại \(M\)đường cao \(MK\)nên
\(AM^2=AK.AO\).
Thử lại.
Với \(a-3b=1\Leftrightarrow a=3b+1\):
\(4a+1=12b+5\).
Đặt \(d=\left(12b+5,4b-1\right)\)
Suy ra \(\hept{\begin{cases}12b+5⋮d\\4b-1⋮d\end{cases}}\Rightarrow12b+5-3\left(4b-1\right)=8⋮d\Leftrightarrow d\inƯ\left(8\right)\)mà \(d\)lẻ nên \(d=1\).
\(a+b=3b+1+b=4b+1\)
\(16ab+1=16b\left(3b+1\right)=48b^2+16b+1=\left(12b+1\right)\left(4b+1\right)⋮\left(4b+1\right)\)
Do đó thỏa mãn.
Trường hợp còn lại tương tự, và cũng thỏa mãn.
Ta có:
\(\left(4a+1,4b-1\right)=1\Leftrightarrow\left(4a+1,4a+4b\right)=1\Leftrightarrow\left(4a+1,a+b\right)=1\)
\(\left(a+b\right)|\left(16ab+1\right)\Leftrightarrow\left(a+b\right)|\left(16ab+4a+4b+1\right)\Leftrightarrow\left(a+b\right)|\left(4a+1\right)\left(4b+1\right)\)
\(\Leftrightarrow\left(a+b\right)|\left(4b+1\right)\)(1)
\(16ab+1=16a\left(b+a\right)-16a^2+1=16a\left(a+b\right)-\left(4a-1\right)\left(4a+1\right)\)
\(\Rightarrow\left(a+b\right)|\left(4a-1\right)\)(2)
lại có: \(\left(4a-1\right)+\left(4b+1\right)=4\left(a+b\right)\)mà \(a,b\inℕ^∗\)
kết hợp với (1), (2) suy ra \(a+b=k\left(4b+1\right),k=\overline{1,3}\)
Suy ra \(\orbr{\begin{cases}a-3b=1\\3a-b=1\end{cases}}\).
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài
\(\hept{\begin{cases}2x+5y=7m+2\\2x+3y=m+2\end{cases}}\Rightarrow2y=6m\)
\(\hept{\begin{cases}2x+3y=m+2\\2x+y=5\end{cases}}\Rightarrow2y=m-3\)
\(\Rightarrow6m=m-3\Leftrightarrow m=-\frac{3}{5}\)
Thử lại thỏa mãn.