câu tính nhanh (-0,6).(-0,8).-0,6. Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2^1}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2002}{2^{2002}}+\dfrac{2003}{2^{2003}}\)
\(\Rightarrow2S=1+\dfrac{2}{2^1}+\dfrac{3}{2^2}+...+\dfrac{2002}{2^{2001}}+\dfrac{2003}{2^{2002}}\)
Trừ vế cho vế:
\(\Rightarrow2S-S=1+\left(\dfrac{2}{2^1}-\dfrac{1}{2^1}\right)+\left(\dfrac{3}{2^2}-\dfrac{2}{2^2}\right)+...+\left(\dfrac{2003}{2^{2002}}-\dfrac{2002}{2^{2002}}\right)-\dfrac{2003}{2^{2003}}\)
\(\Rightarrow S=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2002}}-\dfrac{2003}{2^{2003}}\)
\(\Rightarrow2S=2+1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2001}}-\dfrac{2003}{2^{2002}}\)
Trừ vế cho vế:
\(\Rightarrow2S-S=2-\dfrac{2004}{2^{2002}}+\dfrac{2003}{2^{2003}}\)
\(\Rightarrow S=2-\dfrac{1}{2^{2003}}\left(2004.2-2003\right)\)
\(\Rightarrow S=2-\dfrac{2005}{2^{2003}}< 2\)
Sửa đề: Vuông góc BC tại E
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Sửa đề: ED cắt AB tại F, chứng minh ΔDFC cân
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
=>ΔDFC cân tại D
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
ΔBFC cân tại B
mà BH là đường phân giác
nên H là trung điểm của FC
d: Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE
\(A=\dfrac{2023}{1\cdot2}+\dfrac{2023}{2\cdot3}+...+\dfrac{2023}{2022\cdot2023}\)
\(=2023\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=2023\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=2023\left(1-\dfrac{1}{2023}\right)=2023\cdot\dfrac{2022}{2023}=2022\)
\(A=\dfrac{2023}{1.2}+\dfrac{2023}{2.3}+\dfrac{2023}{3.4}+...+\dfrac{2023}{2022.2023}\)
\(A=\dfrac{2023}{1}.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2022.2023}\right)\)
\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2023}\right)\)
\(A=\dfrac{2023}{1}.\dfrac{2022}{2023}\)
\(A=1.2022\)
\(A=2022\)
Vậy \(A=2022\)
tích của 153 và 9 bằng 1377
an nghĩ số là 2024-1377=647
vậy số an nghĩ là 647.
a: Kẻ DM//AC
=>\(\widehat{DMB}=\widehat{ACB}\)
=>\(\widehat{DMB}=\widehat{DBM}\)
=>DM=DB
mà DB=CE
nên DM=CE
Xét ΔIMD và ΔIEC có
\(\widehat{IMD}=\widehat{ICE}\)(MD//CE)
DM=CE
\(\widehat{IDM}=\widehat{ICE}\)(DM//CE)
Do đó: ΔIMD=ΔIEC
=>ID=IE
=>I là trung điểm của DE
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔABO và ΔACO có
AB=AC
\(\widehat{BAO}=\widehat{CAO}\)
AO chung
Do đó: ΔABO=ΔACO
=>OB=OC và \(\widehat{ABO}=\widehat{ACO}=90^0\)
Xét ΔOBD vuông tại B và ΔOCE vuông tại C có
OB=OC
BD=CE
Do đó: ΔOBD=ΔOCE
=>OD=OE
ΔODE cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)DE
1.
\(y'=\dfrac{2x+4}{2\sqrt{x^2+4x+3}}=\dfrac{x+2}{\sqrt{x^2+4x+3}}\)
2.
\(f'\left(x\right)=\dfrac{1}{2\sqrt{x+1}}+\dfrac{1}{2\sqrt{x-1}}\)
3.
\(y'=\dfrac{\left(2x+2\right)\left(x-2\right)-\left(x^2+2x+1\right)}{\left(x-2\right)^2}=\dfrac{x^2-4x-5}{\left(x-2\right)^2}\)
4.
\(y'=\dfrac{-6}{\left(6x-5\right)^2}\)
5.
\(y'=\dfrac{2.\left(-1\right)-1.1}{\left(x-1\right)^2}=\dfrac{-3}{\left(x-1\right)^2}\)
6.
\(y'=4x^3+4x\)
Diện tích thửa ruộng là 17x10=170(m2)
Tổng độ dài hai đáy là 170x2:12=170/6(m)
Độ dài đáy lớn là \(\dfrac{170}{6}\times\dfrac{3}{4}=\dfrac{170}{8}=\dfrac{85}{4}\left(m\right)\)
Độ dài đáy bé là \(\dfrac{170}{8}:3=\dfrac{170}{24}=\dfrac{85}{12}\left(m\right)\)
126x15+217x45+47
=45x42+217x45+47
=45x(217+42)+47
=45x259+47
=11702
\(\left(-0,6\right).\left(-0,8\right).\left(-0,6\right)\)
\(=\left(-0,6\right).\left(-0,8\right).\left(-0,6\right).1\)
\(=\left(-0,6\right).\left(-0,8.1\right)\)
\(=\left(-0,6\right).\left(-0,8\right)\)
\(=0,48\)