Cho các số dương a,b,c thỏa mãn: \(\left(3a+2b\right)\left(3a+2c\right)=16bc\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a}{b+c}+\frac{b+c}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm \(x_1,x_2\)thì
\(\Delta=9-4\left(m-1\right)=13-4m>0\Leftrightarrow m< \frac{13}{4}\).
Khi phương trình có hai nghiệm \(x_1,x_2\), theo định lí Viet:
\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)
\(\Leftrightarrow x_1^5+32x_2^5-\left(x_1+x_2+3\right)=0\)
\(\Leftrightarrow x_1^5=-32x_2^5\)
\(\Leftrightarrow x_1=-2x_2\)
Thế vào \(x_1+x_2=-3\)ta được \(-2x_2+x_2=-3\Leftrightarrow x_2=3\Rightarrow x_1=-6\).
\(x_1x_2=m-1\Leftrightarrow3.\left(-6\right)=m-1\Leftrightarrow m=-17\)(thỏa mãn).
a)
\(\left(\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}\right)^2\)
\(=a+\sqrt{b}\ne2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}+a-\sqrt{b}\)
\(=2a\ne2\sqrt{a^2-b}=2\left(a\ne\sqrt{a^2}-b\right)\)
\(\Rightarrow\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}=\sqrt{2\left(a\ne\sqrt{a^2}-b\right)}\)
\(\Rightarrowđpcm\)
b)
\(\left(\sqrt{\frac{a+\sqrt{a^2-b}}{2}\ne}\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\right)^2\)
\(=\frac{a+\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}+\frac{a-\sqrt{a^2-b}}{2}\)
\(=\frac{a}{2}+\frac{\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a^2-a^2+b}{2.2}}+\frac{a}{2}-\frac{\sqrt{a^2-b}}{2}\)
\(=a\ne2\frac{\sqrt{b}}{2}=a\ne\sqrt{b}\)
\(\Rightarrow\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\ne\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a\ne\sqrt{b}}\)
\(\Rightarrowđpcm\)
\(\sin^215^o+\sin^275^o-\frac{2\cos49^9}{\sin41^o}+\tan26^o.\tan64^o\)
\(=\sin^215^o+\sin^275^o-\frac{2sin41^0}{\sin41^o}+\tan26^o.cot26^o\)
\(=sin^215^0+cos^215^0-2+1=0\)
giả sử phản chứng trong 16 số đó không có số nào là số nguyên tố, tức là 16 hợp số
=> Xét một số a bất kì trong 16 số đó là hợp số => a=p.q ( \(p\le q\))
Mà \(a\le2020\Rightarrow pq\le2020\Rightarrow p\le44\)
Gọi 16 số đó lần lượt là a1, a2, ...,a15, a16 và mỗi số là hợp số nên phân tích được:
\(a1=p1.q1;a2=p2.q2;...,a16=p16.q16;pk\le qk\)
=> p1,p2,...,p16 \(\le44\)
Gọi r1, r2,..., r16 lần lượt là các ước nguyên tố của p1, p2,...,p16 => r1, r2 ...,r16\(\le44\)
Mà có 14 số nguyên tố khác nhau < 44 ( là các số: 2,3,5,7,11,13,17,19,23,29,31,37,42,43)
Theo nguyên lý Dirichlet có 16 số mà có 14 giá trị => tồn tại rx=ry ( \(1\le x;y\le16\))
=> 2 số bất kì NTCN
=> giả thiết trên sai => đpcm
lại nữa
Từ giả thiết , ta có : \(GT< =>\frac{\left(3a+2b\right)\left(3a+2c\right)}{bc}=\frac{16}{bc}\)
\(< =>\left(\frac{3a}{b}+\frac{2b}{b}\right)\left(\frac{3a}{c}+\frac{2c}{c}\right)=16\)
\(< =>\left(3\frac{a}{b}+2\right)\left(3\frac{a}{c}+2\right)=16\)
đến đây nhắn cho e cái điểm rơi để e nghĩ tiếp nhaaaaaaa