K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

a) 

\(\left(\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}\right)^2\)

\(=a+\sqrt{b}\ne2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}+a-\sqrt{b}\)

\(=2a\ne2\sqrt{a^2-b}=2\left(a\ne\sqrt{a^2}-b\right)\)

\(\Rightarrow\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}=\sqrt{2\left(a\ne\sqrt{a^2}-b\right)}\)

\(\Rightarrowđpcm\)

1 tháng 6 2021

b)

\(\left(\sqrt{\frac{a+\sqrt{a^2-b}}{2}\ne}\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\right)^2\)

\(=\frac{a+\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}+\frac{a-\sqrt{a^2-b}}{2}\)

\(=\frac{a}{2}+\frac{\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a^2-a^2+b}{2.2}}+\frac{a}{2}-\frac{\sqrt{a^2-b}}{2}\)

\(=a\ne2\frac{\sqrt{b}}{2}=a\ne\sqrt{b}\)

\(\Rightarrow\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\ne\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a\ne\sqrt{b}}\)

\(\Rightarrowđpcm\)

NM
1 tháng 6 2021

\(\sin^215^o+\sin^275^o-\frac{2\cos49^9}{\sin41^o}+\tan26^o.\tan64^o\)

\(=\sin^215^o+\sin^275^o-\frac{2sin41^0}{\sin41^o}+\tan26^o.cot26^o\)

\(=sin^215^0+cos^215^0-2+1=0\)

1 tháng 6 2021

giúp me pls :(((((

4 tháng 6 2021

giả sử phản chứng trong 16 số đó không có số nào là số nguyên tố, tức là 16 hợp số

=> Xét một số a bất kì trong 16 số đó là hợp số => a=p.q ( \(p\le q\))

Mà \(a\le2020\Rightarrow pq\le2020\Rightarrow p\le44\)

Gọi 16 số đó lần lượt là a1, a2, ...,a15, a16 và mỗi số là hợp số nên phân tích được:

\(a1=p1.q1;a2=p2.q2;...,a16=p16.q16;pk\le qk\)

=> p1,p2,...,p16 \(\le44\)

Gọi r1, r2,..., r16 lần lượt là các ước nguyên tố của p1, p2,...,p16 => r1, r2 ...,r16\(\le44\)

Mà có 14 số nguyên tố khác nhau < 44 ( là các số: 2,3,5,7,11,13,17,19,23,29,31,37,42,43)

Theo nguyên lý Dirichlet có 16 số mà có 14 giá trị => tồn tại rx=ry ( \(1\le x;y\le16\))

=> 2 số bất kì NTCN 

=> giả thiết trên sai => đpcm

13 tháng 10 2023

Chịu

 

1 tháng 6 2021

Đáp án: D

Phương trình vô nghiệm khi: \(\Delta'< 0\)

Ta có: \(\Delta'=\left(1-m\right)^2+4m=\left(m+1\right)^2\ge0\forall m\)

Nên phương trình luôn có nghiệm với mọi m

1 tháng 6 2021

CHẮC LÀ B ĐÓ

cần ôn thi cực lực bỏ ghêm bỏ phim chỉ co bài tập trong đầu ko đi chơi, ko giải trí

1 tháng 6 2021

à mình biết rồi -.- hơm đố nữa, nhầm công thức delta thảo nào thấy sai sai á 

TH2 : ... 

\(x_1=\frac{m-1-\left|m+3\right|}{4}=\frac{2}{4}=\frac{1}{2}\)( loại )

\(x_2=\frac{m-1+\left|m+3\right|}{4}=\frac{2m+2}{4}=\frac{m+1}{2}\)( chọn )

Vậy chọn B

1 tháng 6 2021

/\ = (m-1)-4 x 2 x (-m-1)

= m-2m +1 -8 x (-m-1)

= m-2m  +1 +8m +8

= m+6m +9

= (m - 3)2 

đến đây thì chịu

Ta có:\(P=\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}=\left(\frac{x+y}{4\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\right)+\frac{3\left(x+y\right)}{4\sqrt{xy}}\ge2\sqrt{\frac{x+y}{4\sqrt{xy}}.\frac{\sqrt{xy}}{x+y}}+\frac{3.2\sqrt{xy}}{4\sqrt{xy}}\)

\(=1+\frac{3}{2}=\frac{5}{2}\)

Dấu '=' xảy ra khi và chỉ khi x=y

Vậy P đạt GTNN của P là 5/2 khi x=y

-.-