Tìm m để pt: \(x^2+5x+3m-1=0\)có 2 nghiệm x1,x2 thỏa mãn: \(x_1^3-x_2^3+3x_1x_2=75\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(B=\frac{1}{\sqrt{16}-2}-\frac{\sqrt{16}}{4-16}\)
\(B=\frac{1}{4-2}-\frac{4}{-12}\)
\(B=\frac{1}{2}+\frac{1}{3}\)
\(B=\frac{5}{6}\)
\(II\)
\(1,\)số xe công ty dự định là x
số xe thực tế x-2
số tấn mỗi xe chở dự định là \(\frac{24}{x}\)
số tấn mỗi xe thực tế chở là \(\frac{24}{x-2}\)
\(\frac{24}{x-2}-\frac{24}{x}=2\)
\(24x-24x+48=2x\left(x-2\right)\)
\(48=2x^2-4x\)
\(2x^2-4x-48=0\)
\(a=2,b=-4,c=-48\)
\(\Delta=\left(b\right)^2-4ac=16-\left(-384\right)\)
\(\Delta=16+384=400>0\)<=> có 2no pt
\(\sqrt{\Delta}=\sqrt{400}=20\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{24}{4}=6\left(tm\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-20}{4}=-4\left(ktm\right)\)
\(III\)
\(1,\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\\left(x+y\right)-3\sqrt{x+1}=-5\end{cases}< =>\hept{\begin{cases}2\left(x+y\right)+\sqrt{x+1}=4\\2\left(x+y\right)-6\sqrt{x+1}=-10\end{cases}}}\)
\(7\sqrt{x+1}=14\)
\(\sqrt{x+1}=2\)
\(\sqrt{x+1}=\sqrt{4}\)
\(x+1=4\)
\(x=3\)
\(2\left(3+y\right)+\sqrt{3+1}=4\)
\(\hept{\begin{cases}x=3\\6+2y+2=4\end{cases}< =>\hept{\begin{cases}x=3\\2y=-4\end{cases}< =>\hept{\begin{cases}x=3\\y=-2\end{cases}}}}\)
\(\)

A B C O E F K I J H M N S T L
c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900
Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:
(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC
Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)
Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\), \(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC
Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)
Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.
Do vậy I,J,K thẳng hàng.

Do 0<x=""≤=""y=""≤=""z="" nên="" ta=""> (y−x)(y−z)≤0
ok nhé bn



\(\sqrt{11+2\sqrt{30}}\)
\(=\sqrt{6+2\sqrt{30}+5}\)
\(=\sqrt{\left(\sqrt{6}\right)^2+2\cdot\sqrt{6}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)
\(=|\sqrt{6}+\sqrt{5}|\)
\(=\sqrt{6}+\sqrt{5}\)
\(\sqrt{7-2\sqrt{10}}\)
\(=\sqrt{5-2\sqrt{10}+2}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=|\sqrt{5}-\sqrt{2}|\)
\(=\sqrt{5}-\sqrt{2}\)
\(\sqrt{11+2\sqrt{30}}=\sqrt{11+2\sqrt{5.6}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5.6}+\left(\sqrt{6}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{6}\right)^2}=\left|\sqrt{5}+\sqrt{6}\right|=\sqrt{5}+\sqrt{6}\)
Để ptrinh có hai nghiệm x1 ; x2 => \(\Delta=25-4.\left(3m-1\right)=29-12m\ge0\)
=> \(m\le\frac{29}{12}\)
Theo viet \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=3m-1\end{cases}}\)
=> \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(-5\right)^2-4.\left(3m-1\right)=29-12m\)
=> \(x_1-x_2=\sqrt{29-12m}\)
Có : \(x_1^3-x_2^3+3x_1x_2=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2-2x_1x_2+x_2^2+3x_1x_2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+3x_1x_2\)
\(=\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2\)
\(\Rightarrow\sqrt{29-12m}\left[\left(-5\right)^2-3m+1\right]+3.\left(3m-1\right)=75\)
\(\Rightarrow\sqrt{29-12m}\left(26-3m\right)+9m-3=75\)
\(\Rightarrow\sqrt{\left(29-12m\right)\left(26-3m\right)^2}=78-9m\)
\(\Rightarrow\left(29-12m\right)\left(26-3m\right)^2=6084-1404m+81m^2\)
\(\Rightarrow108m^3-2052m^2+11232m-13520=0\)
=> \(\orbr{\begin{cases}m=\frac{5}{3}\left(tm\right)\\m=\frac{26}{3}\left(ktm\right)\end{cases}}\)
sry bạn làm ngắn hơn cũng đc chứ mik làm dài