trong các hình thang có 3 cạnh bằng nhau tìm hình thang có diện tích lớn nhất
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VT
1

29 tháng 12 2016
\(P=\frac{x^2+2}{x^2+3}=1-\frac{1}{x^2+3}\ge1-\frac{1}{0+3}=\frac{2}{3}=dpcm\)
HD
1

VN
29 tháng 12 2016
\(\frac{\left(a+b\right)^2}{a^2-b^2}\)
\(=\frac{\left(a+b\right)^2}{\left(a-b\right)\left(a+b\right)}\)
\(=\frac{\left(a+b\right)}{\left(a-b\right)}\)
\(=\frac{2+3}{2-3}\)
\(=\frac{5}{-1}\)
\(=-5\)
Giả sử hình có hình thang ABCD mà AD = AB = BC = a
Từ B kẻ BE // AD => DE = BE = a
Gọi BH là đường cao của hình thang => HE = HC đặt HE = x. Vậy ta có \(BH=\sqrt{a^2-x^2}\)
Diện tích hình thang ABCD là:
\(S=\frac{AB+DC}{2}.BH=\frac{a+a+2x}{2}.\sqrt{a^2-x^2}\)
\(=\left(a+x\right)\sqrt{a^2-x^2}=\sqrt{\left(a+x\right)^2\left(a^2-x^2\right)}\)
\(=\sqrt{27\left(a-x\right).\frac{a+x}{3}.\frac{a+x}{3}.\frac{a+x}{3}}\)(1)
Muốn S lớn nhất thì vế phải của (1) lớn nhất. Mặt khác ta có:
\(\left(a-x\right)+\frac{a+x}{3}+\frac{a+x}{3}+\frac{a+x}{3}=2a\)không đổi, nên S lớn nhất khi \(a-x=\frac{a+x}{3}\Rightarrow a=2x\)
Như vậy hình thang có ba cạnh bằng nhau thì hình thang có một góc bằng 600 có diện tích lớn nhất.