Cho tam giác ABC có diện tích là 1. Gọi a,b,c và ha,hb,hc tương ứng là độ dài cạnh và các đường cao của tam giác ABC.
CMR: \(\left(a^2+b^2+c^2\right)\)\(\left(h_a^2+h_b^2+h_c^2\right)\)\(\ge36\)
Dấu = xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 216-16= 65520=24 x 32 x 5 x 7 x 13
Vậy thứa số nguyên tố lớn nhất là 13
9000=3^2.1000=3^2.10^3=3^2.2^3.5^3
3^2.2^2.5^2=(3.2.5)^2=900
DS: 900 đúng
a) Ta có: \(EA=\frac{1}{2}AB\) và \(AF=\frac{1}{2}AC\). Mà AB = AC => EA=AF
FA=FC và DB=DC => DF//AB hay DF//AE (1)
EB=EA và DB=DC => DE//AC hay DE//AF (2)
Từ (1) và (2) => tứ giác AEDF là hbh . Mà AE = EF (cmt)
=> tứ giác AEDF là h/thoi
b) \(EA=\frac{1}{2}AB=5\left(cm\right)\)
\(\Rightarrow S_{AEDF}=4\cdot5=20\left(cm^2\right)\)
c) tứ giác AEDF là hình vuông <=> A^ = 90o
(nguyên văn câu c là: tam giác ABC cần đk gì để tứ giác AEDF là hình vuông đúng ko bạn? Hay là như trên? Nếu giống như ở trên câu hỏi bạn đăng thì câu c giải như vậy đủ rồi. Còn nếu giống như tớ vừa viết thì thêm dòng này vào sau cùng nhé : " . Mà tam giác ABC cân tại A. Vậy tứ giác AEDF là hình vuông <=> tam giác ABC vuông cân tại A")
Tự vẽ hình bạn nhé ^^!
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều