K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

làm chứng minh ro hơn đc ko

Hai góc C và D bằng nhau

⇒ Hình thang có hai đường chéo bằng nhau là hình thang cân

đúng

21 tháng 9 2021

\(x-x^2\)

\(=-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Ta có: \(-\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

\(2x-2x^2-5\)

\(=-2[\left(x^2-2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}]\)

\(=-2[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}]\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

Ta có: \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-2\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{9}{2}\)

Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

22 tháng 9 2021

`x-x^2`

`= - (x^2 - x)`

`= - (x^2 - 2 . x . 1/2 + 1/4 - 1/4)`

`= - (x-1/2)^2 + 1/4 =< 1/4`

Dấu "=" xảy ra khi : `<=> (x-1/2)^2=0 <=>x=1/2`

Vậy GTLN của BT alf `1/4 <=> x=1/2`

`2x-2x^2-5`

`= -2x^2 +2x-5 = -2 (x^2 - x + 5/2)`

`= - 2 (x^2 - 2 . x . 1/2 + 1/4 +9/4)`

`= -2 (x-1/2)^2 -9/2 =< (-9)/2`

Dấu "=" xảy ra khi : `<=> (x-1/2)^2=0 <=>x=1/2`

Vậy GTLN của BT là `(-9)/2 <=>x=1/2`

21 tháng 9 2021

\(3\left(x-5\right)\left(x-2\right)\left(x+2\right)+4=7+3x^3-15x^2\)

\(\Rightarrow\left(3x-15\right)\left(x^2-4\right)+4-7-3x^3+15x^2=0\)

\(\Rightarrow3x^3-12x-15x^2+6x-3-3x^3+15x^2=0\)

\(\Rightarrow57=12x\)

\(\Rightarrow x=\frac{57}{12}\)

xét tam giác ABD có

[laTEX]\frac{AB}{sin 90} = \frac{AD}{sin 36} \Rightarrow AD = sin 36. AB[/laTEX]

xét tam giác ABE có

[laTEX]\frac{AB}{sin 54} = \frac{BE}{sin 108} \Rightarrow BE = \frac{sin 108}{sin 54}. AB[/laTEX]

ta có

[laTEX]sin 108 = sin (2.54) = 2sin 54. cos 54 \\ \\ BE = \frac{2sin 54. cos 54 }{sin 54}.AB = 2cos54.AB[/laTEX]

mặt khác

[laTEX]cos 54 = sin 36 \Rightarrow 2AD = BE[/laTEX]

Tam giác ABC cân tại A có:

ABC=900−10802=900−540=360ABC=900−10802=900−540=360

BE là tia phân giác của ABC

ABE=EBC=ABC2=3602=180ABE=EBC=ABC2=3602=180

AD là tia phân giác của BAC

BAD=DAC=BAC2=10802=540BAD=DAC=BAC2=10802=540

Tam giác ABE có:

ABE+EAB+AEB=1800ABE+EAB+AEB=1800

180+1080+AEB=1800180+1080+AEB=1800

AEB=1800−1260AEB=1800−1260

AEB=540AEB=540

AD là tia phân giác của BAC của tam giác ABC cân tại A

=> AD là trung tuyến của tam giác ABC

Trên tia đối của AC, lấy điểm H sao cho A là trung điểm của HC

mà D là trung điểm của BC (AD là trung tuyến của tam giác ABC)

=> AD là đường trung bình của tam giác CBH

=> AD // HB 

=> AHB = EAD (2 góc so le trong)

mà EAD = AEB (= 540)

=> AHB = AEB

=> Tam giác HBE cân tại B

=> HB = BE

mà AD = BH/2 (AD là đường trung bình của tam giác CBH)

=> AD = BE/2 = 10/2 = 5 (cm)

k cho mk nha

chúc bn trung thu vui vẻ

HT

21 tháng 9 2021

`a,`

`2x^2 - 6x`

`= 2 (x^2 - 3x) `

`= 2 (x^2 - 2 . x . 3/2 + 9/4 - 9/4)`

`= 2 (x-3/2)^2 -9/2 >= 9/2`

Dấu "=" xảy ra khi :

`<=> (x-3/2)^2=0 <=> x-3/2=0 <=> x=3/2`

Vậy GTNN của BT là `9/2 <=> x=3/2`

`b,`

`x^2 + y^2 - x + 6y +10`

`= (x^2 - x)+(y^2 + 6y)+10`

`= (x^2 - 2 . x . 1/2 +1/4) + (y^2 + 2 . y . 3 + 9) +3/4`

`= (x-1/2)^2 + (y+3)^2 + 3/4 >= 3/4`

Dấu "=" xảy ra khi :

`<=> (x-1/2)^2=0, (y+3)^2=0`

`<=> x=1/2, y=-3`

Vậy GTNN của BT là `3/4 <=> x=1/2, y=-3`

21 tháng 9 2021

a) 3x*(x+2)=0 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

b) (2x+3)(x-1-2x)=0<=>(2x+3)(-x-1)=0\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)

c) (2x+1)2=0<=>x=-1/2

d) x2-4x-3=0<=>\(\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)

22 tháng 9 2021

`a,`

`3x^2 +6x=0 -> 3x (x+2)=0`

TH1 : `3x=0 ->x=0`

TH2 : `x+2=0 ->x=-2`

Vậy `x=0,x=-2`

`b,`

`(2x+3)(x-1)=2x(2x+3) -> (2x+3)(x-1)-2x (2x+3) -> (2x+3)(x-1-2x)=0`

TH1 : `2x+3=0 ->x=(-3)/2`

TH1 : `-x-1=0 ->x=-1`

Vậy `x=(-3)/2, x=-1`

`c,`

`4x^2 +4x+1=0 -> (2x)^2 + 2 . 2x.1+1^2=0 -> (2x+1)^2=0`

`->2x+1=0 ->2x=-1 ->x=(-1)/2`

Vậy `x=(-1)/2`

`d,`

`x^2 - 4x=3 ->x^2 - 4x-3=0 ->x^2 - 2 . x . 2 + 2^2 -7 =0`

`-> (x-2)^2 =7`

TH1 : `x-2=\sqrt{7} ->x=2+\sqrt{7}`

TH2 : `x-2=-\sqrt{7} ->x=2 -\sqrt{7}`

Vậy ..

21 tháng 9 2021

Ta có C = x3 + y3 = ( x + y ) ( x2 - xy + y2 ) = 3 [ ( x2 + 2xy + y2 ) - 3xy ] = 3 ( x + y )2 - 3.3xy 
             = 3. 32 - 3.3.2 = 27 - 18 = 9 

21 tháng 9 2021

Có : `(x+y)^3 = x^3 + y^3 + 3xy (x+y)`

`-> x^3 + y^3 = (x+y)^3 - 3xy (x+y)`

`->x^3 + y^3 = 3^3 - 3 . 2 . 3`

`-> x^3 + y^3 = 27 - 18`

`->x^3 + y^3=9`

Vậy `x^3+y^3=9`

21 tháng 9 2021

\(M=-4x^2+6x-9\)

\(=-\left(4x^2-6x+9\right)=-\left(4x^2-2.2x\frac{3}{2}+\frac{9}{4}+\frac{27}{4}\right)=-\left(2x-\frac{3}{2}\right)^2-\frac{27}{4}\)

Ta có: \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\Rightarrow-\left(2x-\frac{3}{2}\right)^2\le0\Rightarrow-\left(2x-\frac{3}{2}\right)^2-\frac{27}{4}\le\frac{-27}{4}\)

Dấu '' = '' xảy ra khi: \(2x-\frac{3}{2}=0\Rightarrow x=\frac{3}{4}\)

22 tháng 9 2021

`M=  -4x^2 +6x-9`

`->M = -(4x^2 - 6x +9) =- [(2x)^2 - 2 . 2x . 3/2 + 9/4 +27/4] = -(2x - 3/2)^2 - 27/4 =< (-27)/4`

Dấu "=" xảy ra khi : `<=> (2x-3/2)^2=0 <=>x=3/4`

Vậy `max M=(-27)/4 <=> x=3/4`