Cho đoạn thẳng CD và đường thẳng m song song với CD (h.29). Hãy vẽ các điểm A, B thuộc m sao cho ABCD là hình thang có hai đường chéo CA, DB bằng nhau. Sau đó hãy đo các góc C ̂ và D ̂ của hình thang ABCD đó để dự đoán về dạng của các hình thang có đường chéo bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-x^2\)
\(=-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Ta có: \(-\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(2x-2x^2-5\)
\(=-2[\left(x^2-2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}]\)
\(=-2[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}]\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
Ta có: \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-2\left(x-\frac{1}{2}\right)^2\le0\Rightarrow-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le\frac{9}{2}\)
Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
`x-x^2`
`= - (x^2 - x)`
`= - (x^2 - 2 . x . 1/2 + 1/4 - 1/4)`
`= - (x-1/2)^2 + 1/4 =< 1/4`
Dấu "=" xảy ra khi : `<=> (x-1/2)^2=0 <=>x=1/2`
Vậy GTLN của BT alf `1/4 <=> x=1/2`
`2x-2x^2-5`
`= -2x^2 +2x-5 = -2 (x^2 - x + 5/2)`
`= - 2 (x^2 - 2 . x . 1/2 + 1/4 +9/4)`
`= -2 (x-1/2)^2 -9/2 =< (-9)/2`
Dấu "=" xảy ra khi : `<=> (x-1/2)^2=0 <=>x=1/2`
Vậy GTLN của BT là `(-9)/2 <=>x=1/2`
xét tam giác ABD có
[laTEX]\frac{AB}{sin 90} = \frac{AD}{sin 36} \Rightarrow AD = sin 36. AB[/laTEX]
xét tam giác ABE có
[laTEX]\frac{AB}{sin 54} = \frac{BE}{sin 108} \Rightarrow BE = \frac{sin 108}{sin 54}. AB[/laTEX]
ta có
[laTEX]sin 108 = sin (2.54) = 2sin 54. cos 54 \\ \\ BE = \frac{2sin 54. cos 54 }{sin 54}.AB = 2cos54.AB[/laTEX]
mặt khác
[laTEX]cos 54 = sin 36 \Rightarrow 2AD = BE[/laTEX]
Tam giác ABC cân tại A có:
ABC=900−10802=900−540=360ABC=900−10802=900−540=360
BE là tia phân giác của ABC
ABE=EBC=ABC2=3602=180ABE=EBC=ABC2=3602=180
AD là tia phân giác của BAC
BAD=DAC=BAC2=10802=540BAD=DAC=BAC2=10802=540
Tam giác ABE có:
ABE+EAB+AEB=1800ABE+EAB+AEB=1800
180+1080+AEB=1800180+1080+AEB=1800
AEB=1800−1260AEB=1800−1260
AEB=540AEB=540
AD là tia phân giác của BAC của tam giác ABC cân tại A
=> AD là trung tuyến của tam giác ABC
Trên tia đối của AC, lấy điểm H sao cho A là trung điểm của HC
mà D là trung điểm của BC (AD là trung tuyến của tam giác ABC)
=> AD là đường trung bình của tam giác CBH
=> AD // HB
=> AHB = EAD (2 góc so le trong)
mà EAD = AEB (= 540)
=> AHB = AEB
=> Tam giác HBE cân tại B
=> HB = BE
mà AD = BH/2 (AD là đường trung bình của tam giác CBH)
=> AD = BE/2 = 10/2 = 5 (cm)
k cho mk nha
chúc bn trung thu vui vẻ
HT
`a,`
`2x^2 - 6x`
`= 2 (x^2 - 3x) `
`= 2 (x^2 - 2 . x . 3/2 + 9/4 - 9/4)`
`= 2 (x-3/2)^2 -9/2 >= 9/2`
Dấu "=" xảy ra khi :
`<=> (x-3/2)^2=0 <=> x-3/2=0 <=> x=3/2`
Vậy GTNN của BT là `9/2 <=> x=3/2`
`b,`
`x^2 + y^2 - x + 6y +10`
`= (x^2 - x)+(y^2 + 6y)+10`
`= (x^2 - 2 . x . 1/2 +1/4) + (y^2 + 2 . y . 3 + 9) +3/4`
`= (x-1/2)^2 + (y+3)^2 + 3/4 >= 3/4`
Dấu "=" xảy ra khi :
`<=> (x-1/2)^2=0, (y+3)^2=0`
`<=> x=1/2, y=-3`
Vậy GTNN của BT là `3/4 <=> x=1/2, y=-3`
a) 3x*(x+2)=0 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b) (2x+3)(x-1-2x)=0<=>(2x+3)(-x-1)=0\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-1\end{cases}}\)
c) (2x+1)2=0<=>x=-1/2
d) x2-4x-3=0<=>\(\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)
`a,`
`3x^2 +6x=0 -> 3x (x+2)=0`
TH1 : `3x=0 ->x=0`
TH2 : `x+2=0 ->x=-2`
Vậy `x=0,x=-2`
`b,`
`(2x+3)(x-1)=2x(2x+3) -> (2x+3)(x-1)-2x (2x+3) -> (2x+3)(x-1-2x)=0`
TH1 : `2x+3=0 ->x=(-3)/2`
TH1 : `-x-1=0 ->x=-1`
Vậy `x=(-3)/2, x=-1`
`c,`
`4x^2 +4x+1=0 -> (2x)^2 + 2 . 2x.1+1^2=0 -> (2x+1)^2=0`
`->2x+1=0 ->2x=-1 ->x=(-1)/2`
Vậy `x=(-1)/2`
`d,`
`x^2 - 4x=3 ->x^2 - 4x-3=0 ->x^2 - 2 . x . 2 + 2^2 -7 =0`
`-> (x-2)^2 =7`
TH1 : `x-2=\sqrt{7} ->x=2+\sqrt{7}`
TH2 : `x-2=-\sqrt{7} ->x=2 -\sqrt{7}`
Vậy ..
Ta có C = x3 + y3 = ( x + y ) ( x2 - xy + y2 ) = 3 [ ( x2 + 2xy + y2 ) - 3xy ] = 3 ( x + y )2 - 3.3xy
= 3. 32 - 3.3.2 = 27 - 18 = 9
Có : `(x+y)^3 = x^3 + y^3 + 3xy (x+y)`
`-> x^3 + y^3 = (x+y)^3 - 3xy (x+y)`
`->x^3 + y^3 = 3^3 - 3 . 2 . 3`
`-> x^3 + y^3 = 27 - 18`
`->x^3 + y^3=9`
Vậy `x^3+y^3=9`
\(M=-4x^2+6x-9\)
\(=-\left(4x^2-6x+9\right)=-\left(4x^2-2.2x\frac{3}{2}+\frac{9}{4}+\frac{27}{4}\right)=-\left(2x-\frac{3}{2}\right)^2-\frac{27}{4}\)
Ta có: \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\Rightarrow-\left(2x-\frac{3}{2}\right)^2\le0\Rightarrow-\left(2x-\frac{3}{2}\right)^2-\frac{27}{4}\le\frac{-27}{4}\)
Dấu '' = '' xảy ra khi: \(2x-\frac{3}{2}=0\Rightarrow x=\frac{3}{4}\)
`M= -4x^2 +6x-9`
`->M = -(4x^2 - 6x +9) =- [(2x)^2 - 2 . 2x . 3/2 + 9/4 +27/4] = -(2x - 3/2)^2 - 27/4 =< (-27)/4`
Dấu "=" xảy ra khi : `<=> (2x-3/2)^2=0 <=>x=3/4`
Vậy `max M=(-27)/4 <=> x=3/4`
làm chứng minh ro hơn đc ko
Hai góc C và D bằng nhau
⇒ Hình thang có hai đường chéo bằng nhau là hình thang cân
đúng