Cho a,b,c>0. CMR \(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}\ge\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)
Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:
K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3
![](https://rs.olm.vn/images/avt/0.png?1311)
2x2 + 2y2 + 2xy - 6y + 21
= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15
= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15
= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)
Vậy GTNN là 15 đạt được khi x = - 1, y = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
A = a^3 +b^3
= ( a + b )( a^2 - ab + b^2)
= ( a + b )( a^2 + 2ab + b^2 - 3ab )
= ( a +b ) [( a + b )^2 - 3ab ]
= 2 ( 2^2 - 3.3 ) = -10
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=8-18=-10\)
Cho a,b,c là các số thưc thỏa mãn \(1\le a\)và \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN : \(M=a^2+b^2+c^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có BĐT sau:
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(true\right)\)
Khi đó tương tự ta có nốt \(\frac{b^4+c^4}{b^3+c^3}\ge\frac{b+c}{2};\frac{c^4+a^4}{c^3+a^3}\ge\frac{c+a}{2}\)
Khi đó \(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
Ta dễ chứng minh được
\(\frac{a^4}{a^3+b^3}+\frac{b^4}{b^3+c^3}+\frac{c^4}{c^3+a^3}=\frac{b^4}{a^3+b^3}+\frac{c^4}{b^3+c^3}+\frac{a^4}{a^3+c^3}\)( trừ cái là xong )
Khi đó \(LHS\ge\frac{a+b+c}{2}\)
Ta có điều phải chứng minh
Đẳng thức xảy ra tại a=b=c
Sử dụng BĐT Cauchu Schawrz cũng được