Tìm giá trị nhỏ nhất của \(\frac{x-y}{^{^{ }}x^4+y^4-6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử \(\overline{abcd}>\overline{efgh}\). Khi đó \(a>e\) nên suy ra \(b>f,c>g,d>h\).
Gọi \(x^2=\overline{abcd},y^2=\overline{efgh}\) thì \(x^2-y^2=\overline{nnnn}\) (số có 4 chữ số giống nhau).
Ở đây cần chặn \(32\le x,y\le99\)
Trường hợp 1: \(x^2-y^2=1111=11.101\)
Giải được \(x=56,y=45\). Suy ra \(\overline{abcd}=3136,\overline{efgh}=2025\) (nhận được).
Các trường hợp còn lại giải tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn ngonhuminh, chứng minh chỗ (1) sai rồi nhé.
Khi gọi \(d=gcd\left(x-y,2\left(x+y\right)+1\right)\) thì lúc này chưa có \(d=1\).
Vậy \(y^2⋮d\) không suy ra được \(y⋮d\) đâu nha bạn.
Tuy nhiên lời giải có thể sửa lại dễ dàng như sau:
Giả sử \(x-y\) và \(2\left(x+y\right)+1\) không nguyên tố cùng nhau, tức là sẽ có ước NGUYÊN TỐ chung lớn nhất.
Gọi số đó là \(p\). Lúc này \(y^2⋮p\Rightarrow y⋮p\). CM tương tự của bạn suy ra \(p=1\) (vô lí).
Vậy \(x-y\) và \(2\left(x+y\right)+1\) nguyên tố cùng nhau.
\(2x^2+x=3y^2+y\Leftrightarrow\orbr{\begin{cases}\left(x-y\right)\left\{2\left(x+y\right)+1\right\}=y^2\left(1\right)\\\left(x-y\right)\left\{3\left(x+y\right)+1\right\}=x^2\left(2\right)\end{cases}}\)
Vế trái là số Cp=> VP cũng phải là số CP
Trước hết Ta c/m hai thừa số VT là nguyên tố cùng nhau
(1) g/s d là ước lớn nhất của (x-y) và 2(x+y)+1 => y cũng phải chia hết d
\(2\left(x+y\right)+1-2\left(x-y\right)=3y+1\Rightarrow d=1\)
(2)g/s d là ước lớn nhất của (x-y) và 3(x+y)+1 => x cũng phải chia hết d
\(3\left(x+y\right)+1+3\left(x-y\right)=6x+1\Rightarrow d=1\)
=>VT là số Cp xẩy hai trường hợp
TH1: cả ba thừa số đó bằng nhau
\(\left(x-y\right)=2\left(x+y\right)+1=3\left(x+y\right)+1\)Nghiệm duy nhất x=y=0 => x-y=0; 2(x+y)+1=3(x+y)+1=1 đều là số Cp
TH2: Cả hai thừa số VT là số Cp (**)
(*) (**) Hiển nhiên đúng=> dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi \(k^2=26n+17\), tức là \(k^2\) đồng dư 17 (mod 26).
Ta giải phương trình đồng dư này bằng cách cho \(k\) đồng dư 0, cộng trừ 1, ..., cộng trừ 13.
Thì sẽ thấy \(k=26x+11\) hoặc \(k=26x+15\).
Vậy \(n=\frac{\left(26x+11\right)^2-17}{26}\) hoặc \(n=\frac{\left(26x+13\right)^2-17}{26}\) với mọi \(x\) nguyên không âm.
![](https://rs.olm.vn/images/avt/0.png?1311)
ab - cd = 1 => ab = 1 + cd
giả sử n2 = abcd = 100ab + cd = 100 . (1 + cd) + cd = 100 + 101cd
với điều kiện là : 31 < n < 100
=> 101cd = n2 - 100 = (n + 10) . (n - 10)
vì 31 < n < 100 => 21 < n - 10 < 90 và 101 là số nguyên tố nên n + 10 = 101 => n = 101 - 10 = 91
ta có : 912 = 8281 và thỏa mãn được điều kiện ab - cd = 1 => 82 - 81 = 1
vậy abcd = 8281
tui không bít
-0,25 bạn