K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(A=\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\)

\(\Leftrightarrow A\ge\frac{1}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

3 tháng 1 2017

nhưng e chưa học bđt này a ơi

3 tháng 1 2017

\(a^2=0,b^2=4\Rightarrow a=0,b=2\)

max\(A=2\)

min\(A\)=2

3 tháng 1 2017

Làm tắt thế tềnh yêu :)))) Trần Quốc Đạt

a , b nhỏ hơn hoặc bằng 2; tổng bình phương là 1 số chẵn nên  a và b hoặc cùng lẻ, hoặc cùng chẵn.

Mà trong khoảng 0 , 1 , 2 chỉ có hai số chẵn chứ không có hai số lẻ.

Vai trò của a và b như nhau nên coi a=0, tính được b = 2

A = a + b =2.

3 tháng 1 2017

đề sai : đề thật nè  Chứng minh rằng m^3+20m chia hết cho 48 

  m = 2k thì 
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5) 
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong. 
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2 
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2 
Vậy k(k^2 + 5) chia hết cho 2 
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3 
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3 
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3 
Vậy k(k^2 + 5) chia hết cho 3 
=>dpcm

tk nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

Lập luận quá sắc nét bái phục

3 tháng 1 2017

thực hiện phép chia 2x^2+x-18 cho x-3 được 2x+7 dư 3

ta được 2x^2+x-18/x-3=2x+7*(3/x-3)

nên để phép chia 2x^2+x-18 cho x-3 là chia hết thì x-3 thuộc Ư(3)

từ đó suy ra

x thuộc các gt 0;2;4;6

tk  nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

A = \(\frac{x^2+2x+2017}{2017x^2}\)\(\frac{\left(x+1\right)^2+2016}{2017x^2}\)

Ta có: (x+1)2 \(\ge0\)với \(\forall x\)Dấu "=" xảy ra khi x= -1

2017x2 \(\ge0\)với \(\forall x\)Dấu "=" xảy ra khi x = 0

Suy ra \(\frac{\left(x+1\right)^2}{2017x^2}\)\(\ge\)0 với \(\forall x\)

<=> \(\frac{\left(x+1\right)^2+2016}{2017x^2}\)\(\ge\)2016 với \(\forall x\)

Mình nghĩ thế! 

3 tháng 1 2017

\(A\ge\frac{2016}{2017^2}\)đẳng thức khi \(x=-4034\)

3 tháng 1 2017

 với mọi x, y, z ta có: 
(x-y)^2 +(y-z)^2+ (z-x)^2>=0 
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 
<=>(x+y+z)^2 >= 3(x+y+z) 
<=>[(x+y+z)^2]/3 >= xy+yz+ zx 
=>xy +yz + zx <=3 
dấu = xảy ra khi x=y=z =1

tk nha bạn

thank you bạn

(^_^)

le anh tu giỏi quá, làm đúng rồi

Bạn s4.jpgHồ Thị Hà Giang làm theo cách của bạn ấy nha

Ai thấy mình nói đúng thì nha

3 tháng 1 2017

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a=b=c\) (a,b,c là các số dương)

Bạn thay vào A để tính.

3 tháng 1 2017

Gt:

TG ABC có góc B=90độ

MA=MC; MF_I_AB;  ME_I_BC;  MN_I_AB;   FN=NM;   AB=3cm;AC=5cm

KL:(a) TG BEMF là hình chữ nhật

(b) TG  BMAN là hình thoi

(c) Sbemf=?

Giải:

(a) Hứơng c/m " là tứ giác có 3 góc vuông"=> chỉ cần c/m 3 là đủ

(1)Góc B vuông theo (gt)

(2)góc MEB (có mũ trên ghét làm hình) là vậy vuông (gt)

(3)góc MFB vuông theo (gT)

=> dpcm

(b) Hướng chứng minh " tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau là hình thoi"

(1) Theo cách dựng hình MN & AB chính là hai đường chéo

(2) MN_I_AB theo (gt)

(3) MF=FN (gt) giải thích thêm N đối xứng của M qua F  tất nhiên F phải là trung điểm

(4)FA=FB  vì MF vuong góc với AB (gt) => MF// BC mà MA=MC (gt)=> theo tính chất Tam giác (ABC) MF chính là đường trung bình => FA=FB (*)

Vậy MN cắt AB tại trung điểm F đồng thời vuông góc với nhau => dpcm

(c) diện tích hình chữ nhật BEMF (hôm trước là tam giác mà)

 (*)

BF=AB/2=3/2

BE=BC/2=4/2=2  {BC=4 theo hệ thức trong tam giác vuông 3^2+4^2=5^2)

=>S=3/2*2=3(cm^2) 

3 tháng 1 2017

\(f\left(0\right)=b;f\left(b\right)=ab+b;f\left(f\left(b\right)\right)=a^2b+b=2\)

\(f\left(1\right)=a+b;f\left(f\left(1\right)\right)=a\left(a+b\right)+b;f\left(f\left(f\left(1\right)\right)\right)=a\left(a\left(a+b\right)\right)+b=29\)

\(\hept{\begin{cases}a^2b+b=2\\a^3+a^2b+b=29\end{cases}}\Rightarrow a^3=27\Rightarrow\hept{\begin{cases}a=3\\b=\frac{1}{5}\end{cases}}\Rightarrow f\left(x\right)=3x+\frac{1}{5}\)

3 tháng 1 2017

ngonhuminh làm sai mà vẫn cho là đúng???

Cẩn thận \(f\left(f\left(f\left(1\right)\right)\right)=f\left(f\left(a+b\right)\right)=f\left(a\left(a+b\right)+b\right)=a\left[a\left(a+b\right)+b\right]+b\)