Cho biểu thức A = ( \(\frac{2x+1}{x-1}\)+ \(\frac{8}{x^2-1}\)- \(\frac{x-1}{x+1}\)) . \(\frac{x-1}{x+1}\)
a. Tìm điều kiện để biểu thức A xác định
b) Rút gọn A
c) Tìm giá trị nhỏ nhất của biểu thức A.
Làm giúp mình câu c) thôi cũng được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2.\left(x^2-2.\frac{1}{4}.x+\frac{1}{16}\right)-\frac{9}{8}=2.\left(x-\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bài ra , ta có :
\(\left(x+3\right)^4+\left(x+5\right)^4=16\)
\(\Leftrightarrow\left(x+3+x+5\right)^4=16\)
\(\Leftrightarrow\left(2x+8\right)^4=16\)
\(\Leftrightarrow2x+8=2\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt =))
![](https://rs.olm.vn/images/avt/0.png?1311)
b, ta có
goc BDF + goc FDE + gocEDA=180
goc BFD + goc DFE+goc EFC=180
mà goc BDF=goc EFD (chứng minh trên: cmt)
goc FDE= goc DBF (cmt)
=> goc EDA= goc EFC
Xét tam giác ADE và tam giác EFC có
EF=AD(cmt))
góc EDA = EFC ( cmt)
góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)
=> tam giác ADE = tam giác EFC ( dpcm)
c, Vi tam giác ADE= tam giác EFC
=> AE=EC( 2 cạnh tương ứng)
còn phần a nữa
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(8x^2+10x+3=\left(8x^2+6x\right)+\left(4x+3\right)\)
\(=2x\left(4x+3\right)+\left(4x+3\right)\)
\(=\left(2x+1\right)\left(4x+3\right)\)
\(4x^2+7x+3=\left(4x^2+4x\right)+\left(3x+3\right)\)
\(=4x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(4x+3\right)\)
\(ĐKXĐ:x\ne-1,x\ne\frac{-3}{4}\)
\(8x^2+10x+3=\frac{1}{4x^2+7x+3}\)
<=>\(\left(8x^2+10x+3\right)\left(4x^2+7x+3\right)=1\)
<=>\(\left(2x+1\right)\left(4x+3\right)\left(x+1\right)\left(4x+3\right)=1\)
<=>\(\left(2x+1\right)\left(4x+3\right)^2\left(x+1\right)=1\)
<=>\(\left(4x+2\right)\left(4x+3\right)^2\left(4x+4\right)=8\)
(Nhân cả 2 vế với 8)
<=>\(\left[\left(4x+2\right)\left(4x+4\right)\right]\left(4x+3\right)^2=8\)
<=>\(\left(16x^2+24x+8\right)\left(16x^2+24x+9\right)=8\)
Đặt \(16x^2+24x+8.5=y\)
\(ĐK:y>-0.5\)
(Vì \(16x^2+24x+8.5=\left(4x+3\right)^2-0.5>-0.5\)với mọi x thỏa mãn ĐKXĐ)
Phương trình trở thành:
(y-0.5)(y+0.5)=8
<=>\(y^2-0.25=8\)
<=>\(y^2=8.25\)
<=>\(\orbr{\begin{cases}y=\frac{\sqrt{33}}{2}\left(\text{thỏa mãn}\right)\\y=\frac{-\sqrt{33}}{2}\left(\text{loại}\right)\end{cases}}\)
Với \(y=\frac{\sqrt{33}}{2}\)
Ta có:\(16x^2+24x+8.5=\frac{\sqrt{33}}{2}\)
<=>\(32x^2+48x+17-\sqrt{33}=0\)
<=>\(\left(x\sqrt{33}+3\sqrt{2}\right)^2=\sqrt{33}+1\)
<=>\(\orbr{\begin{cases}x\sqrt{33}+3\sqrt{2}=\sqrt{\sqrt{33}+1}\\x\sqrt{33}+3\sqrt{2}=-\sqrt{\sqrt{33+1}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\\x=\frac{-\sqrt{\sqrt{33}+1}-3\sqrt{2}}{\sqrt{33}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\\x=\frac{-\sqrt{33\sqrt{33}+33}-3\sqrt{66}}{33}\left(\text{thỏa mãn ĐKXĐ}\right)\end{cases}}\)
(Kết luận: Vậy tập nghiệm của phương trình đã cho là...)
a) xác định khi x khác +-1
b)
\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)
\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)
\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)
c)
GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)
GTNN \(A=\frac{7}{16}\)