Cho tam giác nhọn ABC (CB < CA), có tâm đường tròn nội tiếp I và đường tròn ngoại tiếp (O). AI cắt BC tại D và cắt (O) lần thứ hai tại E. Đường tròn đi qua A,I vàtiếpxúcvớiAC,cắt(O)lầnthứhaitạiF.BC vàEF cắtnhautạiđiểmK.
a) Chứng minh EI2 = EF · EK.
b) Gọi P là giao điểm của BI và DF. Chứng minh các điểm A,K,P thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
<=> \(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)
<=> \(2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
<=> \(\left(a+b+b+c+c+a\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
<=> \(\frac{a+b}{b+c}+\frac{a+b}{c+a}+1+1+\frac{b+c}{c+a}+\frac{b+c}{a+b}+\frac{c+a}{b+c}+1+\frac{c+a}{a+b}\ge9\)
<=> \(\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)+\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)\ge6\)(đúng)
=> ĐPCM
Mình làm cách đơn giản nhất nhá :))
Ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{9}{2}\left(Cauchy-Schwarz\right)\)
Hay \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3\ge\frac{9}{2}\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
A B I O D E C K' P' F'
a) Ta có ^EBI = 1/2(^ABC + ^BAC) = ^EIB => EI = EB (1)
^EFB = 1800 - ^BAC/2 = ^EBK => \(\Delta\)EFB ~ \(\Delta\)EBK => EB2 = EF.EK (2)
(1);(2) => EI2 = EF.EK (đpcm).
b) Định nghĩa lại các điểm như sau: K' nằm trên tia đối tia BC sao cho CK' = CA, AK' giao IB tại P', EK' cắt lại (O) tại F'.
Ta dễ có ^CK'I = ^CAI = ^BAI => (A,I,B,K')cyc
=> ^AP'I = 1800 - ^P'AI - ^AIP' = 1800 - ^ABC/2 - 900 - ^ACB/2 = ^BAC/2 = ^K'F'B
=> (K',P',F',B)cyc => ^K'F'B = ^K'BP' = ^ABC/2 = ^K'AD (3)
Tương tự câu a ta có EF'.EK' = EI2 = ED.EA => (A,K',F',D)cyc => ^K'AD = 1800 - ^K'F'D (4)
(3);(4) => P',F',D thẳng hàng
Từ đây suy ra: DF'.DP' = DB.DK' = DI.DA => (A,I,P',F')cyc
Mà (AIP') tiếp xúc với AC vì ^IAC = ^IP'A = ^BAC/2 nên F' trùng với F, dẫn đến K' trùng K và P' trùng P
Vì A,K',P' thẳng hàng nên A,K,P thẳng hàng (đpcm).