K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

là số 7

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

6 tháng 1 2017

a=12 b=1 c=4

k đi

6 tháng 1 2017

chị có phải tên là ngọc anh ko

6 tháng 1 2017

thcs diễn trường

6 tháng 1 2017

Ta có B = D

=> 180o - A = D

=> A + D = 180o

Vậy ABCD là HBH

6 tháng 1 2017

có nick violympic v11 k?

6 tháng 1 2017

có nick violympic v11 k?

6 tháng 1 2017

Ta có

\(x^2+x^2y^2-2y=0\)

\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)

\(\Leftrightarrow-1\le x\le1\)(1)

Ta lại có

\(x^3+2y^2-4y+3=0\)

\(\Leftrightarrow x^3=-2y^2+4y-3\)

\(=\left(-2y^2+4y-2\right)-1\)

\(=-1-2\left(y-1\right)^2\le-1\)

\(\Rightarrow x\le-1\)(2)

Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)

\(\Rightarrow y^2-2y+1=0\)

\(\Rightarrow y=1\Rightarrow y^2=1\)

\(\Rightarrow Q=x^2+y^2=1+1=2\)

6 tháng 1 2017

Để cho (n2 +2) chia hết cho 5 thì n2 phải có tận cùng là 3 hoặc 8

Mà n2 là 1 số chính phương nên không bao giờ có tận cùng là 3 hoặc 8.

Từ đó ta có (n2 +2) không chia hết cho 5 với mọi số tự nhiên n

Vậy phân số \(\frac{n^2+2}{5}\)là phân số tối giản với mọi số tự nhiên n

6 tháng 1 2017

có nick violympic v11 k?

6 tháng 1 2017

Áp đụng bất đẳng thức vào

\(\left(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\right)\ge\frac{\left(x+y+z\right)^2}{2+3+4}=\frac{x^2+y^2+z^2}{2+3+4}+\frac{2\left(xz+yz+xy\right)}{2+3+4}\)

\(\Rightarrow\hept{\begin{cases}2\left(xz+yz+xy\right)=0\\\frac{x^2}{2}=\frac{y^2}{3}=\frac{z^2}{4}\end{cases}\Rightarrow x=y=z=0}\)\(\Rightarrow D=0\)

6 tháng 1 2017

Ta có

\(\frac{x^2+y^2+z^2}{2+3+4}=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{9}\right)+\left(\frac{y^2}{3}-\frac{y^2}{9}\right)+\left(\frac{z^2}{4}-\frac{z^2}{9}\right)=0\)

\(\Leftrightarrow\frac{7x^2}{18}+\frac{2y^2}{9}+\frac{5z^2}{36}=0\)

\(\Leftrightarrow x=y=z=0\)

\(\Rightarrow D=0\)