Tứ giác ABCD có góc C bằng 600; góc D bằng 600 . Gọi E là giao điểm của các đường phân giác trong của góc A và góc B. Số đo của góc AEB là …0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cạnh của đa giác là n ta có
Số đo của n góc trong là
180.(n - 2)
Số đo 1 góc trong là (đa giác đều)
\(\frac{180\left(n-2\right)}{n}\)
Số do 1 góc ngoài là
\(180-\frac{180\left(n-2\right)}{n}=\frac{360}{n}\)
Theo đề bài ta có
\(\frac{360n}{n}+\frac{180\left(n-2\right)}{n}=500\)
\(\Leftrightarrow n=9\)
(x2 - x + 2)2 + (x - 2)2
= x4 - 2x3 + 6x2 - 8x + 8
= (x4 + 4x2) + (- 2x3 - 8x) + (2x2 + 8)
= (x2 + 4)(x2 - 2x + 2)
2x3 + 11x2 + 3x - 36
= (2x3 + 6x2) + (5x2 + 15x) + (- 12x - 36)
= (x + 3)(2x2 + 5x - 12)
= (x + 3)[(2x2 + 8x) + (- 3x - 12)]
= (x + 3)(x + 4)(2x - 3)
Gọi \(x,y,z\) là số giải nhất, nhì, kk được trao.
Ta có pt nghiệm tự nhiên \(150000x+130000y+50000z=2700000\).
Thu gọn lại: \(15x+13y+5z=270\)
Và một pt còn lại: \(x+y+z=20\)
Nhân 5 vào pt dưới rồi lấy pt trên trừ pt dưới được \(10x+8y=170\).
Dễ thấy \(y\le20\) mà lại có \(y\) chia hết cho 10 nên \(y=10\) hoặc \(y=20\).
Nếu \(y=10\): Giải được \(x=9,z=1\).
Nếu \(y=20\): Giải được \(x=1,z=-1\) (vô lí).
Vậy có 9 giải nhất, 10 giải nhì, 1 giải kk được trao (cơ cấu giải gì mà quái dị thế?)