Nếu 2y3-5x=0 thì 5x-2y3+1=?.Giúp mình với!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x^3=x^2+2x-1\Leftrightarrow2x^3-x^2-2x+1=0\Leftrightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(x+1\right)=0\)
<=> 2x-1=0 hoặc x-1=0 hoặc x+1=0 <=> x=1/2 hoặc x=1 hoặc x=-1
b)\(x^2-4+\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
Thao bài ra , ta có
\(a^2+b^2=1,c^2+d^2=1\)
và ac + bd = 0
Theo bất đẳng thức Bunhiacopxki , Ta có :
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2\)
mà ac + bd = 0
\(\Rightarrow\left(ac+bd\right)=0\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2=0\)
, \(\Rightarrow ac=bd\)
\(\Rightarrow ab=cd\Rightarrow\left(ab+cd\right)=0\Rightarrow\left(ab+cd\right)^2=0\)
Vậy \(ab+cd=0\)
Chúc bạn học tốt =))
A M B C D
MBA; MCD có : AB//DC => đồng dạng
CD = 3AB => S(MCD) = 32.S(MAB)
S(MCD) = 9.6 = 54 m2
S(ABCD) = S(MCD) - S(MAB) = 54 - 6 = 48 m2
bằng=1