cho x+y=1 và xy khác 0
C/M: \(\frac{y}{x^3-1}-\frac{x}{y^3-1}=\frac{2\left(x-y\right)}{x^2y^2+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thích nhân phân phối không thích ghép
(x-3)^3=x^3-3.3.x^2+3.3^2.x-3^3
ok
(x-3)^3=27+19=54
\(x=3+\sqrt[3]{54}=3+3\sqrt{2}\)
Bài này giải theo phương trình tích
Ta có : x^3 - 9x^2 + 27x =19
<=> x^3 - 9x^2 + 27x -19 = 0
<=> x^3 - x^2 - 8x^2 + 8x + 19x -19 = 0
<=> x^2(x-1) - 8x(x-1) + 19(x-1) = 0
<=> (x-1)(x^2 - 8x + 19) = 0
Ta CM được x^2 - 8x + 19 >0
=> x-1= 0 <=> x=1
Vậy phương trình có nghiêm x=1
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
a, x3-3x+2=x3-x-2x+2=[x3-x]-[2x-2]=x[x2-1]-2[x-1]=x[x-1][x+1]-2[x-1]=[x-1][x[x+1]+2]=[x-1][x2+x+2]
b,x3-2x2-x+2=[x3-2x2]-[x-2]=x2[x-2]-[x-2]=[x-2][x2-1]=[x-2][x-1][x+1]
c,2x2+x+4=2[x2+x/2+2]
d,x2-2x+y2+4y+5=0
[x2-2x+1]+[y2+4y+4]=0
[x-1]2+[y+2]2=0
x-1=0suy rax=1
hoac y+2=0 suy ra y=-2
Bậc 3 nhẩm được nghiệm chơi tốt
a)
x(x^2-1)-2(x-1)=(x-1)(x^2-3)=>\(x=1;+-\sqrt{3}\)
b) x(x^2-1)-2(x^2-1)=(x^2-1)(x-2)=(x-2)(x-1)(x+1)=> x=-1,1,2
c) mỏi rồi
ko biết
câu này thi bn quy đòng bình thường mà tính thôi
khai triển ra
rồi tạo ra x= y để thay vào bạn cứ biến đổi
như vậy thì sẽ ra thôi