K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Trước tiên chứng minh:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

(nhân vô rút gọn chuyển hết sang trái được)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)

\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)

Từ đây ta có:

\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)

\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)

Vậy \(ab+bc+ca\le\frac{3}{4}\)

14 tháng 4 2017

1 cách khác của tui (câu hỏi của trg tuấn nghĩa) trên hh nhé

21 tháng 1 2017

\(x-\sqrt{x-8}-3.\sqrt{8}+1=0\)Đúng vậy không? vì cách viết của bạn con 8 đầu có thể nằm ngoài căn

14 tháng 4 2017

cách giải đề thi chuyên toán 10 năm 2014-2015

20 tháng 1 2017

bạn là boy hay girls

20 tháng 1 2017

0 rảnh mày ạ. Tìm người khác đi. Chẳng ai yêu mày đâu

20 tháng 1 2017

Áp dụng BĐT Cauchy với 2 số không âm

x+y ≥ 2√xy

1/x + 1/z ≥ 2/(√xy)

Nhân 2 biểu thức vào ta được (x+y)(1/x + 1/y) ≥ 4

<=> 1/x + 1/y ≥ 4/(x+y) ( BĐT Schwarz ) => đpcm

cách này mk xem trên mạng hơi khó hiểu

 

1 tháng 12 2019

Cường Nguyễn             

Không có x,y dương à :V

20 tháng 1 2017

Theo bài ra , ta có : 

\(x^5=x^4+x^3+x^2+x+2\)

\(\Leftrightarrow x^5-1-\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)(1)

Ta tiếp tục xét phương trình này 

\(x^4+x^3+x^2+x+1=0\)(2) 

Nhân cả hai vế của phương trình (2) cho x - 1 , ta được 

\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)

\(\Leftrightarrow x^5-1=0\Leftrightarrow x^5=1\)(3) 

Phương trình (3) có nghiệm bằng x = 1 , nhưng giá trị này không thỏa mãn ở phương trình (2) 

=) ptvn

Suy ra phương trình (1) có dạng 

\(x-2=0\)

\(\Leftrightarrow x=2\)

Tập nghiệm của phương trình là S={2}

Chúc bạn học tốt =))

22 tháng 1 2017

thank you ban